Редуктор для аргоновой сварки ар-40, ар-30, баро 50-4

Измерение по перепаду давления

Чаще всего данный способ предполагает использование диафрагмы. В этом случае в трубопроводе для сужения потока устанавливается диафрагма, обычно представляющая собой пластину с отверстием в середине. Давление проходящего через диафрагму газа падает, при этом разница давлений до сужения и после него пропорциональна скорости, а значит и расходу проходящего газа. Используя дифференциальные датчики давления, можно узнать разницу давлений и перевести эти значения в значение расхода.

Еще одним прибором, использующим перепад давления для измерения расхода, является труба Вентури. В этом устройстве сужение и расширение трубопровода происходят постепенно. Труба представляет собой два усеченных конуса, соединенных узкими концами. При этом конус расширения имеет большую длину, чем конус сужения.

Подвидом трубы Вентури можно считать измерительное сопло, в котором, присутствует конус сужения, но в отличие от трубы Вентури, отсутствует расширяющаяся часть. Данный прибор используется в случае, если турбулентность потока крайне высока.

Также существуют расходомеры, в которых сужение потока создается при помощи клинового ограничителя. В остальном данные расходомеры аналогичны прочим приборам, использующим принцип измерения по перепаду давления.

Преимуществом данных расходомеров является достаточно высокая точность измерения, а также не столь значительное повышение стоимости при увеличении диаметра трубопровода. Основным недостатком же является то, что установленная диафрагма вызывает значительные потери напора проходящего по трубопроводу газа. Труба Вентури создает гораздо меньшие потери, чем диафрагма, однако является достаточно габаритной и дорогой. Кроме этого данные расходомеры плохо применимы при небольших значениях расхода.

На следующем графике можно увидеть значения потерь давления для разных типов сужающих устройств:

Продолжение:

Подобрать расходомер, подходящий для решения Вашей задачи, можно в каталоге продукции или обратившись к нашим техническим специалистам.

Мембранный расходомер

Это одни из наиболее простых приборов измерения расхода. Принцип их работы основан на перемещении мембран измерительных камер по мере поступления в них газа. Впуск и выпуск газа вызывает движение стенок камер, что в свою очередь приводит в движение счетный механизм. Число сокращений и расширений камер при этом пропорционально объему проходящего через прибор газа.

Данные приборы обладают широким диапазоном и относительно недороги, однако из-за невысокой точности, неустойчивости к повышенному давлению и невозможности измерения больших расходов, они являются практически неприменимыми в промышленной сфере.

Ротаметры для воды

Материал корпуса таких приборов выбирается по тем же критериям, что и для газовых ротаметров, однако далее конструкция претерпевает изменения, которые связаны с различиями в плотностях воды и газа. Чаще всего расход воды устанавливают, используя датчики оптического или теплового типа.

Оптический ротаметр для воды действует так. Прозрачный корпус с поплавком размещается перед источником света. Его лучи проходят через рассеиватель, и собираются фокусирующей линзой, которая располагается с противоположной стороны прибора. Яркость источника освещения устанавливается таким образом, чтобы интенсивность внешнего света не влияла на точность показаний прибора. Отражённый линзой свет поступает на фотоумножитель, усиливается и передаётся на триггер, которые начинает формировать импульсы определённой частоты. Интенсивность и амплитуда частотных колебаний преобразуются в единицы расхода воды.

Подобным образом действует и лазерный ротаметр, но вместо оптических параметров света используются квантовые. Такие ротаметры более компактны, а потому успешно применяются в целях измерения текущих значений расхода воды в трубопроводах малых поперечных сечений.

При высокой степени загрязнения воды оптические и лазерные ротаметры неэффективны. В таких случаях устанавливают приборы ультразвукового или механического типа.

Особенности аргоновых редукторов

Первая из них связана с различной плотностью газов. Плотность аргона при нормальных условиях составляет 1,784 кг/м3, в то время как плотность кислорода – 1,301 кг/м3 , а углекислого газа – 1,965 кг/м3. Соответственно, при использовании не «своего» редуктора придётся перенастраивать и ротаметр. Что рекомендуется только в специализированных мастерских, иначе показания расхода аргона будут существенно разниться от фактических.

Второе отличие связано со значениями допустимых давлений газа. Для кислородных редукторов они всегда меньше, поскольку смесь кислорода практически с любой составляющей взрывоопасна. Этот факт определяет повышенные требования к качеству запорной и присоединительной арматуры, уплотнениям и пр. Вместе с тем, добротность изготовления кислородных редукторов всегда позволяет использовать их и для аргона. Но не наоборот.

Поскольку расход аргона при сварке следует регулировать более точно, все типоразмеры аргоновых редукторов отличаются увеличенной площадью мембраны

Это особенно важно при сварке алюминия или нержавеющей стали. Увеличенная площадь мембраны:

  • препятствует замерзанию газа при отрицательных внешних температурах;
  • позволяет более экономично использовать аргон;
  • дополнительно стабилизирует расход газа.

Различие в расходах приводит к выводу – использовать обычные регуляторы расхода при сварке аргоном нецелесообразно, поскольку при этом не обеспечивается необходимая точность. А заправка баллона аргоном обойдётся гораздо дороже, чем заправка углекислотой

Поэтому использование традиционных редукторов, понижающих давление, но не показывающих расход (а для вариантов со смесью аргона и углекислого газа, или аргона с гелием это особенно важно) в данном случае не приветствуется. Предпочтение следует отдать регуляторам расхода, в конструкции которых предусмотрены ротаметры

Ещё лучше использовать наиболее универсальный, углекислотный редуктор, с двумя ротаметрами.

Устройство ротаметра

Устройство ротаметра для визуального считывания информации, показано на Рис. 2.

Поплавок выполнен в виде цилиндра с обтекаемой формой. Верхняя часть поплавка содержит косые вырезы. Благодаря им набегающий поток заставляет вращаться и занимать устойчивое положение поплавок по принципу гироскопа, тем самым избегая трения о боковые стенки цилиндра. Показания считываются по верхнему срезу индикатора.

Рис. 2

Металлические ротаметры (Рис. 3) включают в себя металлическую трубу с переменным сечением 1, внутри которой располагается поплавок 2 с закрепленным на нем постоянным магнитом 3. Под воздействием постоянного давления (например, протекающей жидкости) поплавок занимает определенное положение, определяемое равными величинами силы тяжести с одной стороны и силы Архимеда и давления – с другой стороны. Также ферромагнитная шайба из стали закреплена на стрелке указателя расхода. Под воздействием магнита поплавка возникает отклонение стрелки. Шкала размечена под определенную жидкость или газ. Такие ротаметры в автоматизированных системах снабжены преобразователем угла поворота в напряжение или в цифровую форму.

Рис. 3

Правила выбора аргоновых редукторов

Приборы разрабатываются и производятся в соответствии с ГОСТ 12.2.008 и ГОСТ 13861. Основными критериями выбора аргонового редуктора считаются:

  1. Наибольшая пропускная способность (относительно аргона этот показатель всегда устанавливается в л/ч, а не в м3/ч, что необходимо учитывать применительно к шкале манометра).
  2. Необходимость в подогревателе.
  3. Максимальное давление газа в МПа.
  4. Номинальное давление газа в МПа.
  5. Возможность работы с альтернативным источником (например, с углекислотой).

В последнем случае необходимо учитывать, что рекомендуемое давление для аргона составляет 0,5…1,0 МПа, в то время, как для углекислого газа оно может достигать 2,5 МПа. В лучшем положении будут находиться владельцы универсальных редукторов типа АР-40/У-30: там в манометрах конструктивно предусмотрено калиброванное отверстие – дюза, наличие которой позволяет более точно определять расход газа

Осторожно следует подходить к выбору редуктора, если в перспективе предполагается использование аргоново-углекислотной смеси: в этом случае номинальное давление и расход возрастают на 40…50%

Ротаметр. Определяем текущий расход воды и газа

Как правильно выбрать продувочный пистолет?

Принцип работы ротаметра

Газообразная или жидкая среда поступает через входное отверстие в донной части ротаметра, движется вверх через колбу, а затем покидает прибор через выходное отверстие в верхней части. Результатом направленного вверх движения среды в конусообразной колбе является перемещение поплавка. Для того, чтобы поплавок перемещался в строго вертикальном направлении: вверх и вниз, монтаж ротаметра должен осуществляться в вертикальном исполнении. Для того, чтобы поплавок не выходил из колбы в верхней и донной ее частях устанавливаются стопорные устройства, такими устройствами могут быть пластмассовые или металлические фиксаторы. В качестве направляющего устройства для поплавка вдоль стенок внутри колбы проходят стеклянные или пластмассовые кромки, или ребра, которые предотвращают отклонение, переворачивание или заклинивание поплавка в колбе.

Обычно у ротаметра имеется шкала для снятия показаний о количестве движущейся среды. Шкала может быть выгравирована на самой колбе или же на какой-нибудь полоске, находящейся рядом с колбой. Шкала откалибрована в единицах измерения расхода потока, в кубических метрах, например. Фактическое показание изменяется в соответствии с изменением положения поплавка относительно шкалы.

Конструкции наиболее распространённых редукторов для аргона

У нас в стране наибольшее распространение получили редукторы от торговой марки REDIUS линейки АР: АР-30 и АР-40 (популярны также модификации АР-40-2 и АР-30-2, комплектуемые двумя ротаметрами: под углекислоту, и под аргон). Они представляют собой одно- или двухступенчатые редукторы, которые рассчитываются на пропускающую способность газа соответственно 30 и 40 кубометров в час. Для обеспечения надлежащей точности показаний, а также с учётом высокой плотности аргона редукторы устанавливаются строго в вертикальном положении. Климатический диапазон применения -25…+45ºС.

Незначительными конструктивными изминениями отличаются предназначенные для тех же целей аргоновые редукторы БАРО 50-4 производства Алтайского агрегатного завода.

Аргоновый редуктор (точнее – универсальный газовый регулятор расхода) представляет собой узел, составными частями которого являются:

  1. камера для регулирования давления;
  2. манометр;
  3. ротаметр для управления расходом аргона;
  4. ротаметр для управления расходом углекислоты.

Ротаметры размещаются последовательно, и снабжены отдельными запорно-присоединительными элементами. Это позволяет сварщику при необходимости отключать тот или иной ротаметр, и снижать потери давления газа при работе.

Такие редукторы позволяют также автоматически поддерживать расход аргона на определённом уровне. Например, для снижения расхода пользователь частично закрывает вентиль в камере, в результате чего снижающееся давление газа опускает нажимную пружину, которая перекрывает трубопровод. Для того чтобы исключить возможную негерметичность клапана, в аргоновых редукторах предусмотрена установка двух фильтров.

Для облегчения эксплуатации аргоновых редукторов при пониженных температурах окружающего воздуха к ротаметру можно последовательно подключить блок подогрева.

Цена двухступенчатых устройств, в зависимости от их комплектации, составляет 2000…2300 руб., в то время как одноступенчатый аргоновый регулятор модели АР-40 КР-1-м-Р1 можно приобрести всего за 1200 руб.

Ротационный расходомер

В измерительной камере ротационного расходомера находятся два ротора, расположенные поперек потока и соединенные шестернями так, что одним краем каждый ротор касается стенки камеры, а противоположным – другого ротора. При поступлении воздуха роторы под его напором приходят в движение и начинают обкатываться друг по другу, отсекая определенные порции газа так, что каждый оборот соответствует определенному объему. Счетчик посредством механической передачи фиксирует число вращений роторов, а затем это значение переводится в значение объема. Данные расходомеры имеют широкий диапазон, низкую погрешность и высокую стабильность, однако крайне восприимчивы к загрязнению, имеют подвижные части и могут использоваться только для относительно малых диаметров.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий