Физические и химические свойства алюминия

Производство алюминия

До начала позапрошлого века не было достоверной информации о производстве металла. Первые несколько миллиграммов получил Ганс Эрстед в 1825. Через два года Фридрих Велер выделил крупинки, но они моментально покрывались пленкой на воздухе.

До конца XIX столетия вещество не производили в промышленных масштабах. И только в 1854 при финансировании Наполеона III, который надеялся об усилении армии с помощью металла, Сент-Клер Девиль вытеснил алюминий натрием из двойного хлорида натрия. Через год он получил первый слиток массой 6 кг, а до 1890 ученый смог создать более 200 т вещества.

В 1885 году построили первый завод в Гмелингеме, Германия. Технологию для производства разработал Николай Бекетов. Его метод мало отличался от способа Сент-Клер Девиля, но основывался на взаимодействии магния и криолита. За пять лет работы завод создал более 58 т металла, что составило четверть мирового производства.

Эру и Холл практически одновременно изобрели еще один метод — электролиз глинозема. Его растворяли в расплавленном криолите. Он и стал основой современного создания алюминия. В России первый завод появился в 1932 году, тогда промышленность СССР порадовала 47,7 млн т металла. Стимулировала производство Вторая мировая война.

А к 2021 в мире сделали около 59 млн т, лидерами стали:

  • Китай;
  • РФ;
  • Канада;
  • США;
  • Австралия.

Технологические свойства

Легкость, с которой алюминий может быть переработан в любую форму – технологичность, является одним из наиболее важных его достоинств. Очень часто он может успешно конкурировать с более дешевыми материалами, которые намного труднее обрабатывать:

  • Этот металл может быть отлит любым методом, который известен металлургам-литейщикам.
  • Он может прокатан до любой толщины вплоть до фольги, которая тоньше листа бумаги.
  • Алюминиевые листы можно штамповать, вытягивать, высаживать и формовать всем известными методами обработки металлов давлением.
  • Алюминий можно ковать всеми методами ковки
  • Алюминиевая проволока, которую волочат из круглого прутка, может затем сплетаться в электрические кабели любого размера и типа.
  • Почти не существует ограничений формы профилей, в которые получают из этого металла методом экструзии (прессования).

Рисунок 18.1 – Литье алюминия в песчаную форму

Рисунок 18.2 – Непрерывная разливка-прокатка алюминиевой полосы

Рисунок 18.3 – Операция высадки при изготовлении алюминиевых банок

Рисунок 18.4 – Операция ковки алюминия

Рисунок 18.5 – Холодное волочение алюминия


Рисунок 18.6 – Прессование (экструзия) алюминия

  1. Aluminium and Aluminium Alloys. – ASM International, 1993.
  2. A. Sverdlin Properties of Pure Aluminum // Handbook of Aluminum, Vol. 1 /ed. G.E. Totten, D.S. MacKenzie, 2003
  3. TALAT 1501
  4. TALAT 3710

Химические свойства:

При нормальных условиях алюминий покрыт тонкой и прочной оксидной плёнкой и потому не реагирует с классическими окислителями: с H2O (t°);O2, HNO3 (без нагревания). Благодаря этому алюминий практически не подвержен коррозии и потому широко востребован современной индустрией. Однако, при разрушении оксидной плёнки (например, при контакте с растворами солей аммония NH4+, горячими щелочами или в результате амальгамирования), алюминий выступает как активный металл-восстановитель. Легко реагирует с простыми веществами: кислородом, галогенами: 2Al + 3Br2 = 2AlBr3
С другими неметаллами алюминий реагирует при нагревании:
2Al + 3S = Al2S3     2Al + N2 = 2AlN
Алюминий способен только растворять водород, но не вступает с ним в реакцию.
Со сложными веществами: алюминий реагирует со щелочами (с образованием тетрагидроксоалюминатов):
2Al + 2NaOH + 6H2O = 2Na[Al(OH)4] + 3H2
Легко растворяется в разбавленной и концентрированной серной кислотах:
2Al + 3H2SO4(разб) = Al2(SO4)3 + 3H2     2Al + 6H2SO4(конц) = Al2(SO4)3 + 3SO2 + 6H2O
Алюминий восстанавливает металлы из их оксидов (алюминотермия): 8Al + 3Fe3O4 = 4Al2O3 + 9Fe

Химические свойства

Известно взаимодействие алюминия с разбавленными серной и соляной кислотой. При нагревании этот металл в них легко растворяется. Холодная концентрированная или сильно разбавленная азотная кислота не растворяет этот элемент. Водные растворы щелочей активно воздействуют на вещество, в процессе реакции образуя алюминаты – соли, в составе которых имеются ионы алюминия. Например:

Al2O3 +3H2O+2NaOH=2Na[Al(OH)4]

Получившееся в результате реакции соединение носит название тетрагидроксоалюминат натрия.

Тонкая пленка на поверхности алюминиевых изделий защищает этот металл не только от воздуха, но и от воды. Если эту тонкую преграду убрать, элемент станет бурно взаимодействовать с водой, выделяя из нее водород.

Образовавшееся вещество называется гидроксидом алюминия.

AL (OH)3 реагирует с щелочью, образуя кристаллы гидроксоалюмината:

Al(OH)2+NaOH=2Na[Al(OH)4]

Если это химическое уравнение сложить с предыдущим, получим формулу растворения элемента в щелочном растворе.

Свойства

Физические свойства алюминия позволяют легко вытягивать заготовки этого металла в проволоку и прокатывать в тонкие листы. Этот металл не является прочным, для повышения данного показателя при выплавке его легируют различными добавками: медью, кремнием, магнием, марганцем, цинком

Для промышленного назначения важно еще одно физическое свойство вещества алюминия – это его способность быстро окисляться на воздухе. Поверхность изделия из алюминия в естественных условиях обычно покрыта тонкой оксидной пленкой, которая эффективно защищает металл и препятствует его коррозии

При уничтожении этой пленки серебристый металл быстро окисляется, при этом его температура заметно повышается.

Виды травления

Травление металлов вообще и алюминия в частности бывает двух основных видов: химическое и гальваническое. Последним методом осуществляют как раз художественное.

При химическом: изделие кладется в емкость, в которую предварительно налит раствор соляной или серной кислоты. Таким же способом осуществляется травление алюминиевой заготовки щелочью, например едким натром.

А гальваническое (иначе — электролитическое или электрохимическое) происходит благодаря электрической батарее. Сам процесс осуществляется в специальной ванне, где есть анод и катод.

Далее будет рассмотрен каждый из способов травления алюминия более подробно. Также выясним, какой метод наиболее безопасный в домашних условиях.

Промышленное использование

Алюминий был открыт в 1825 году. Поначалу данный металл ценился выше золота и серебра. Это объяснялось сложностью его извлечения из руды. Физические свойства алюминия и его способность быстро образовывать защитную пленку на своей поверхности затрудняли исследование этого элемента. Лишь в конце 19 века был открыт удобный способ плавки чистого элемента, пригодный для использования в промышленных масштабах.

Легкость и способность сопротивляться коррозии – уникальные физические свойства алюминия. Сплавы этого серебристого металла применяются в ракетной технике, в авто-, судо-, авиа- и приборостроении, в производстве столовых приборов и посуды.

Как чистый металл Al используется при изготовлении деталей для химической аппаратуры, электропроводов и конденсаторов. Физические свойства алюминия таковы, что его электропроводность не так высока, как у меди, но этот недостаток компенсируется легкостью рассматриваемого металла, что позволяет делать провода из алюминия более толстыми. Так, при одинаковой электропроводности алюминиевый провод весит в два раза меньше медного.

Не менее важным является применение Al в процессе алитирования. Так называется реакция насыщения поверхности чугунного или стального изделия алюминием с целью защиты основного металла от коррозии при нагревании.

В настоящее время изведанные запасы алюминиевых руд вполне сопоставимы с потребностями людей в этом серебристом металле. Физические свойства алюминия могут преподнести еще немало сюрпризов его исследователям, а сферы применения этого металла гораздо шире, чем можно представить.

Упаковка продуктов

Катаный алюминий – ленты и фольга – применяют в упаковке сыпучих и жидких продуктов. Алюминиевая упаковка сопровождает нас повсюду в нашей жизни — это, например, алюминиевые банки и бутылки, фольга в упаковке продуктов и лекарств. Алюминий обладает низкой плотностью, совместимостью с продуктами и напитками и привлекательным внешним видом. Это делает его идеальным материалом для различных видов упаковки: жестких (банки) и мягких (фольга).

Алюминиевые банки

Из алюминия изготавливают 75 % банок для напитков и 15 % емкостей для аэрозолей. Алюминиевые банки обеспечивают значительное снижение веса упаковки по сравнению с аналогичными стальными банками.

Читать также: Труба для дымогенератора холодного копчения

Корпус банки изготавливают из сплава серии 3000 (алюминиево-марганцевые сплавы), который после глубокой высадки раскатывают до толщины стенки 0,27 мм.

Крышка банки составляет 25 % ее веса. Ее изготавливают из более прочного алюминиево-магниевого сплава. Встроенный в банку рычаг-«открывашка», который крепится к банке на интегральной заклепке, состоит из другого алюминиево-магниевого сплава. Эту заклепку накатывают из тела крышки при ее изготовлении.

Алюминиевая банка для упаковки пива и прохладительных напитков

Требования к алюминиевым сплавам для упаковочного сектора промышленности:

  • низкая плотность;
  • прочность;
  • хорошая формуемость;
  • совместимость с продуктами и напитками;
  • декоративность (способность к нанесению рисунков и надписей);
  • стоимость.

Упаковочная фольга

Алюминиевую фольгу обычно изготавливают из марок технического алюминия серии 1000. Свойства алюминия, которые обеспечивают возможность его применения в качестве материала для изготовления фольги, следующие:

  • прочность и непроницаемость для жидкостей и газов при малой толщине;
  • низкая плотность;
  • термическая проводимость;
  • теплостойкость;
  • стойкость к проникновению газов и жидкостей;
  • совместимость с продуктами и напитками;
  • эстетический и декоративный потенциал.

Алюминиевая упаковочная фольга

Взаимодействие алюминия со сложными веществами

с водой

Как уже было сказано выше, стойкая и прочная оксидная пленка из Al2O3 не дает алюминию окисляться на воздухе. Эта же защитная оксидная пленка делает алюминий инертным и по отношению к воде. При снятии защитной оксидной пленки с поверхности такими методами, как обработка водными растворами щелочи, хлорида аммония или солей ртути (амальгирование), алюминий начинает энергично реагировать с водой с образованием гидроксида алюминия и газообразного водорода:

с оксидами металлов

После поджигания смеси алюминия с оксидами менее активных металлов (правее алюминия в ряду активности) начинается крайне бурная сильно-экзотермическая реакция. Так, в случае взаимодействия алюминия с оксидом железа (III) развивается температура 2500-3000оС. В результате этой реакции образуется высокочистое расплавленное железо:

2AI + Fe2O3 = 2Fe + Аl2О3

Данный метод получения металлов из их оксидов путем восстановления алюминием называется алюмотермией или алюминотермией.

с кислотами-неокислителями

Взаимодействие алюминия с кислотами-неокислителями, т.е. практически всеми кислотами, кроме концентрированной серной и азотной кислот, приводит к образованию соли алюминия соответствующей кислоты и газообразного водорода:

2Аl + 6Н+ = 2Аl3+ + 3H2;

-концентрированной серной кислотой

Взаимодействие алюминия с концентрированной серной кислотой в обычных условиях, а также низких температурах не происходит вследствие эффекта, называемого пассивацией. При нагревании реакция возможна и приводит к образованию сульфата алюминия, воды и сероводорода, который образуется в результате восстановления серы, входящей в состав серной кислоты:

Такое глубокое восстановление серы со степени окисления +6 (в H2SO4) до степени окисления -2 (в H2S) происходит благодаря очень высокой восстановительной способности алюминия.

— концентрированной азотной кислотой

Концентрированная азотная кислота в обычных условиях также пассивирует алюминий, что делает возможным ее хранение в алюминиевых емкостях. Так же, как и в случае с концентрированной серной, взаимодействие алюминия с концентрированной азотной кислотой становится возможным при сильном нагревании, при этом преимущественно параллельно протекают реакции:

— разбавленной азотной кислотой

Взаимодействие алюминия с разбавленной по сравнению с концентрированной азотной кислотой приводит к продуктам более глубокого восстановления азота. Вместо NO в зависимости от степени разбавления могут образовываться N2O и NH4NO3:

8Al + 30HNO3(оч. разб) = 8Al(NO3)3 + 3NH4NO3 + 9H2O

со щелочами

Алюминий реагирует как с водными растворами щелочей:

так и с чистыми щелочами при сплавлении:

В обоих случаях реакция начинается с растворения защитной пленки оксида алюминия:

Аl2О3 + 2NaOH + 3H2O = 2Na[Al(OH)4]

Аl2О3 + 2NaOH = 2NaAlO2 + Н2О

В случае водного раствора алюминий, очищенный от защитной оксидной пленки, начинает реагировать с водой по уравнению:

Образующийся гидроксид алюминия, будучи амфотерным, реагирует с водным раствором гидроксида натрия с образованием растворимого тетрагидроксоалюмината натрия:

Al(OH)3 + NaOH = Na[Al(OH)4]

Производство и рынок

Основная статья: Алюминиевая промышленность

 Производство алюминия в миллионах тонн

Достоверных сведений о получении алюминия до XIX века нет. Встречающееся иногда со ссылкой на «Естественную историю» Плиния утверждение, что алюминий был известен при императоре Тиберии, основано на неверном толковании источника.

В 1825 году датский физик Ганс Христиан Эрстед получил несколько миллиграммов металлического алюминия, а в 1827 году Фридрих Вёлер смог выделить крупинки алюминия, которые, однако, на воздухе немедленно покрывались тончайшей плёнкой оксида алюминия.

До конца XIX века алюминий в промышленных масштабах не производился.

Только в 1854 году Анри Сент-Клер Девиль (его исследования финансировал Наполеон III, рассчитывая, что алюминий пригодится его армии) изобрёл первый способ промышленного производства алюминия, основанный на вытеснении алюминия металлическим натрием из двойного хлорида натрия и алюминия NaCl·AlCl3. В 1855 году был получен первый слиток металла массой 6—8 кг. За 36 лет применения, с 1855 по 1890 год, способом Сент-Клер Девиля было получено 200 тонн металлического алюминия. В 1856 году он же получил алюминий электролизом расплава хлорида натрия-алюминия.

В 1885 году был построен завод по производству алюминия в немецком городе Гмелингеме, работающий по технологии, предложенной Николаем Бекетовым. Технология Бекетова мало чем отличалась от способа Девиля, но была проще и заключалась во взаимодействии между криолитом (Na3AlF6) и магнием. За пять лет на этом заводе было получено около 58 т алюминия — более четверти всего мирового производства металла химическим путём в период с 1854 по 1890 год.

Метод, изобретённый почти одновременно Чарльзом Холлом в США и Полем Эру во Франции (1886 год) и основанный на получении алюминия электролизом глинозёма, растворённого в расплавленном криолите, положил начало современному способу производства алюминия. С тех пор, в связи с улучшением электротехники, производство алюминия совершенствовалось. Заметный вклад в развитие производства глинозёма внесли русские учёные К. И. Байер, Д. А. Пеняков, А. Н. Кузнецов, Е. И. Жуковский, А. А. Яковкин и др.

Первый алюминиевый завод в России был построен в 1932 году в городе Волхов. Металлургическая промышленность СССР в 1939 году производила 47,7 тыс. тонн алюминия, ещё 2,2 тыс. тонн импортировалось.

Вторая мировая война значительно стимулировала производство алюминия. Так, в 1939 году общемировое его производство, без учёта СССР, составляло 620 тыс. т, но уже к 1943 году выросло до 1,9 млн т.

К 1956 году в мире производилось 3,4 млн т первичного алюминия, в 1965 году — 5,4 млн т, в 1980 году — 16,1 млн т, в 1990 году — 18 млн т.

В 2007 году в мире было произведено 38 млн т первичного алюминия, а в 2008 — 39,7 млн т. Лидерами производства являлись:

  1. КНР (в 2007 году произвёл 12,60 млн т, а в 2008 — 13,50 млн т)
  2. Россия (3,96/4,20)
  3. Канада (3,09/3,10)
  4. США (2,55/2,64)
  5. Австралия (1,96/1,96)
  6. Бразилия (1,66/1,66)
  7. Индия (1,22/1,30)
  8. Норвегия (1,30/1,10)
  9. ОАЭ (0,89/0,92)
  10. Бахрейн (0,87/0,87)
  11. ЮАР (0,90/0,85)
  12. Исландия (0,40/0,79)
  13. Германия (0,55/0,59)
  14. Венесуэла (0,61/0,55)
  15. Мозамбик (0,56/0,55)
  16. Таджикистан (0,42/0,42)

В 2016 году было произведено 59 млн тонн алюминия

См. также: Список стран по выплавке алюминия

На мировом рынке запас составляет 2,224 млн т., а среднесуточное производство — 128,6 тыс. т. (2013.7).

В России монополистом по производству алюминия является компания «Российский алюминий», на которую приходится около 13 % мирового рынка алюминия и 16 % глинозёма.

Мировые запасы бокситов практически безграничны, то есть несоизмеримы с динамикой спроса. Существующие мощности могут производить до 44,3 млн т первичного алюминия в год. Следует также учитывать, что в будущем некоторые из применений алюминия могут быть переориентированы на использование, например, композитных материалов.

Цены на алюминий (на торгах международных сырьевых бирж) с 2007 по 2015 годы составляли в среднем 1253—3291 долларов США за тонну.

Технологические свойства

Легкость, с которой алюминий может быть переработан в любую форму – технологичность, является одним из наиболее важных его достоинств. Очень часто он может успешно конкурировать с более дешевыми материалами, которые намного труднее обрабатывать:

  • Этот металл может быть отлит любым методом, который известен металлургам-литейщикам.
  • Он может прокатан до любой толщины вплоть до фольги, которая тоньше листа бумаги.
  • Алюминиевые листы можно штамповать, вытягивать, высаживать и формовать всем известными методами обработки металлов давлением.
  • Алюминий можно ковать всеми методами ковки
  • Алюминиевая проволока, которую волочат из круглого прутка, может затем сплетаться в электрические кабели любого размера и типа.
  • Почти не существует ограничений формы профилей, в которые получают из этого металла методом экструзии (прессования).

Рисунок 18.1 – Литье алюминия в песчаную форму

Рисунок 18.2 – Непрерывная разливка-прокатка алюминиевой полосы

Рисунок 18.3 – Операция высадки при изготовлении алюминиевых банок

Рисунок 18.5 – Холодное волочение алюминия

Источник

Применение

Механические свойства алюминия не столь хороши, чтобы применять его в чистом виде. Поэтому чаще всего используются сплавы на основе данного вещества. Таких много, можно назвать самые основные.

  1. Дюралюминий.
  2. Алюминиево-марганцевые.
  3. Алюминиево-магниевые.
  4. Алюминиево-медные.
  5. Силумины.
  6. Авиаль.

Основное их отличие — это, естественно, сторонние добавки. Во всех основу составляет именно алюминий. Другие же металлы делают материал более прочным, стойким к коррозии, износоустойчивым и податливым в обработке.

Можно назвать несколько основных областей применения алюминия как в чистом виде, так и в виде его соединений (сплавов).

  1. Для изготовления проволоки и фольги, используемой в быту.
  2. Изготовление посуды.
  3. Самолетостроение.
  4. Кораблестроение.
  5. Строительство и архитектура.
  6. Космическая промышленность.
  7. Создание реакторов.

Вместе с железом и его сплавами алюминий — самый важный металл. Именно эти два представителя периодической системы нашли самое обширное промышленное применение в руках человека.

Химические свойства

Алюминий — серебристо-белый легкий металл, технический состав плавится при температуре 658 градусов, чистый — при 660, а закипает он при 2518, 8. К физическим свойствам относится и пластичность. Она у вещества очень высокая: 35% и 50% у промышленного и природного сплава соответственно. Его можно раскатать до состояния фольги или тонкого листа.

Модуль Юнга у алюминия составляет 70 ГПа, коэффициент Пуассона — 0,34. Он отлично отражает свет, проводит тепло и электричество. Вещество может взаимодействовать практически со всеми металлами, образует сплавы с кремнием, магнием, медью.

В нормальных условиях алюминий покрыт прочной тонкой оксидной пленкой, поэтому на него не действуют обычные окислители. Но он реагирует на разбавленные серные растворы.

Но если пленка разрушилась — ее могут повредить соли аммония, горячие щелочи или амальгамирование, то вещество превращается в восстановитель. Галий, олово и индий не дают ей образоваться, при этом поверхность металла нужно покрыть легкоплавкими эвтектиками.

Перечень того, с чем реагирует алюминий:

  • кислородом;
  • галогенами;
  • неметаллами;
  • водой и ее парами;
  • щелочами;
  • соляной, азотной и серной кислотами.

При реакции с кислородом образуется оксид алюминия, его формула — 4Al + 3O2 = 2Al2O3. Фторид вещества: 2Al + 3F2 = 2AlF3. Сульфид образуется при взаимодействии с серой:2Al + 3S = Al2S3, 2Al + N2 = 2AlN — это нитрид металла, 4Al + 3C = Al4C3 — карбид после реакции с углеродом.

Характерная степень окисления алюминия — плюс три, но его атомы могут образовывать дополнительные связи. При взаимодействии со щелочами образуется тетрагидроксоалюминат (или другие алюминаты): 2Al + 2NaOH + 6H2O = 2Na (Al (OH)4) + 3H2. Металл можно растворить в разбавленной серной кислоте: 2Al + 3H2SO4 = Al2 (SO 4)3 + 3H2.

Интересна реакция алюминия с водой. Для нее необходимо удалить защитную пленку с помощью раствора горячей щелочи или амальгамы: 2Al + 6H2O = 2Al (OH3) + 3H2. При взаимодействии с окислителями происходит разложение вещества: 2Al + 6H2SO4 = Al2 (SO4)3 + 3SO2 + 6H2O — растворимые соли, уравнение реакций. Химические свойства алюминия включают восстановление металлов из оксидов, реакцию с парами воды.

Горение металлов

По характеру горения металлов их делят на две группы: ле­тучие и нелетучие. Летучие металлы обладают относительно низкими температурами фазового перехода — температура плав­ления менее 1000 К, температура кипения не превышает 1500 К. К этой группе относятся щелочные металлы (литии, натрий, ка­лий и др.) и щелочноземельные (магний, кальций). Температуры фазового перехода нелетучих металлов значительно выше. Тем­пература плавления, как правило, выше 1000 К. а температура кипения — больше 2500 К (табл. 1). Механизм горения металлов во многом определяется состоянием их окисла. Температура плавления летучих металлов зна­чительно ниже температуры плавления их окислов. При этом по­следние представляют собой достаточно пористые образования.

При поднесении источника зажигания к поверхности металла происходит его испарение и окисление. При достижении концентрации паров, равной нижнему концентрационному пределу, про­исходит их воспламенение. Зона диффузионного горения устанав­ливается у поверхности, большая доля тепла перелается металлу, и он нагревается до температуры кипения. Образующиеся пары, свободно диффундируя через пористую окисную пленку, посту­пают в зону горения. Кипение металла вызывает периодическое разрушение окисной пленки, что интенсифицирует горение. Про­дукты горения (окислы металлов) диффундируют не только к по­верхности металла, способствуя образованию корки окисла, но и в окружающее пространство, где, конденсируясь, образуют твер­дые частички в виде белого дыма. Образование белого плотного дыма является визуальным признаком горения летучих металлов.

У нелетучих металлов, обладающих высокими температурами фазового перехода, при горении на поверхности образуется весь­ма плотная окисная пленка, которая хорошо сцепляется с по­верхностью металла. В результате этого скорость диффузии паров металла через пленку резко снижается и крупные частицы, на­пример, алюминия и бериллия, гореть не способны. Как правило, пожары таких металлов имеют место в том случае, когда они находятся в виде стружки, порошков и аэрозолей. Их горение происходит без образования плотного дыма. Образование плот­ной окисной пленки на поверхности металла приводит к взрыву частицы. Это явление особенно часто наблюдается при движении частицы в высокотемпературной окислительной среде, связывают с накоплением паров металлов под окисной пленкой с последую­щим внезапным ее разрывом. Это, естественно, приводит к рез­кой интенсификации горения.

Основными параметрами их горения являются время воспламе­нения и сгорания. Из теории диффузионного горения следует, что время сгорания частицы металла tг пропорционально квадрату ее диаметра do. Экспериментальные данные показывают, что фактическая зависимость несколько отличается от теоретической. Так, для алюминия tг

Повышение концентрации кислорода в атмосфере интенсифицирует горение металла. Частички алюминия диаметром (53 ÷ 66) 10 -3 мм в атмосфере, содержащей 23% кис­лорода, сгорают за 12,7·10 -3 с, а при повышении концентрации окислителя до 60% — за 4,5·10 -3 с.

Однако для пожарно-технических расчетов большой интерес представляет не время сгорания частицы металла, а скорость рас­пространения пламени по потоку взвеси частиц металла в окис­лителе. В табл.2 приведены экспериментальные данные по скорости распространения пламени и массовой скорости выгора­ния взвеси частиц диаметрами менее 10 -2 мм и 3·10 -2 мм алю­миния в воздухе при различном коэффициенте избытка воздуха.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий