Рафинирование меди.
Для получения меди необходимой чистоты черновую медь подвергают огневому и электролитическому рафинированию. При этом, помимо удаления примесей можно извлекать также благородные металлы.
При огневом рафинировании черновую медь загружают в пламенную печь и расплавляют в окислительной атмосфере. В этих условиях из меди удаляются в шлак те примеси, которые обладают большим сродством к кислороду, чем медь.
Для ускорения процесса рафинирования в ванну с расплавленной медью подают сжатый воздух. Большинство примесей в виде оксидов переходят в шлак (Fe2O3, Al2O3, SiO2), а некоторые примеси при рафинировании удаляются с газами. Благородные металлы при огневом рафинировании полностью остаются в меди. Кроме благородных металлов в меди в небольших количествах присутствуют примеси сурьмы, селена, теллура, мышьяка. После огневого рафинирования получают медь чистотой 99 – 99,5%. Для удаления этих примесей, а также для извлечения золота и серебра медь подвергают электролитическому рафинированию.
Электролиз ведут в специальных ваннах, футерованных внутри свинцом или другим защитным материалом. Аноды изготовляют из меди огневого рафинирования, а катоды – из тонких листов чистой меди. Электролитом служит раствор сернокислой меди. При пропускании постоянного тока анод растворяется и медь переходит в раствор. На катодах разряжаются ионы меди, осаждаясь на них прочным слоем чистой меди.
Находящиеся в меди примеси благородных металлов выпадают на дно ванны в виде остатка (шлама). После электролитического рафинирования получают медь чистотой 99,95 – 99,99%.
Химическая промышленность
Химический комплекс относится к числу базовых отраслей тяжелой промышленностиРоссии и включает химическую и нефтехимическую промышленность, подразделяющиеся на многие отрасли и производства, а также микробиологическую промышленность. Он обеспечивает производство кислот, щелочей, минеральных удобрений, разнообразных полимерных материалов, красителей, бытовой химии, лаков и красок, резино-асбестовой, фотохимической и химико-фармацевтической продукции.
Сложившееся размещение химического комплекса имеет ряд особенностей:
— высокую концентрацию предприятий в европейской части России;
— сосредоточение центров химической промышленности в районах, дефицитных по водным и энергетическим ресурсам, но концентрирующих основную часть населения и производственного потенциала;
Определение диаметральных размеров поковки.
Диаметр детали D, мм | Припуски и предельные отклонения (д ± Д/2), мм | Размеры поковки, мм | |
Ш 82 | 9 ± 3 | Ш 91 ± 3 | |
Ш 62 | 8 ± 2 | Ш 70 ± 2 |
Для назначения припусков, предельных отклонений, расчета линейных размеров поковки определяют диаметр наибольшего сечения. В данном задании диаметр 82 мм.
Определение линейных размеров поковки.
Номинальный размер детали, мм | Припуски и предельные отклонения (д ± Д/2), мм | Размеры поковки, мм | |
620 | (1,25·9 + 1,25·9) ± (2,5·3) | 642,5 ± 7,5 | |
200 | (1,25·9 – 0,75·9) ± (0,5·3) | 204,5 ± 1,5 | |
100 | (0,75·9 + 0,75·9) ± (1,5·3) | 113,5 ± 4,5 |
После назначения припусков и определения размеров поковки проводим проверку выполнимости уступов в соответствии с условиями проверки.
Рассматриваемая поковка содержит:
концевой уступ высотой 10,5 ( (91-70) /2) мм и длиной 204,5 мм;
концевой уступ высотой 10,5 ( (91-70) /2) мм и длиной 324,5 (642,5- (204,5+113,5) мм;
Таким образом, все части рассматриваемой поковки являются выполнимыми (значения высот концевых уступов не менее 4 мм). Что даёт нам право не назначать напуски.
Окончательные размеры поковки приведены на рисунке.
Медь и полезные диеты.
Потребности организма во всех необходимых ему веществах должны восполняться, главным образом, из продуктов в процессе питания. Пища в питательных формах содержит все, что необходимо, включая: витамины, минералы, пищевые волокна и другие природные вещества, оказывающие положительное влияние на здоровье человека.
В некоторых случаях обогащенные продукты питания и пищевые добавки могут быть полезны для обеспечения необходимого количества одного или нескольких питательных веществ.
Диетические рекомендации включают:
Потребление различных овощей и фруктов, цельного зерна, мало жирных или обезжиренных молока и молочных продуктов, а также масла.
Некоторые овощи, фрукты, зерновые и молочные продукты содержат медь.
Употребление разнообразных белковых продуктов, включая морепродукты, постное мясо и птицу, яйца, бобовые, орехи, семена и соевые продукты.
Некоторые мясные продукты, морепродукты, а также орехи и семена богаты медью
Ограничение в рационе насыщенных и трансжиров, добавленных сахаров и соли.
Соблюдение плана по своему ежедневному планы потребления калорий.
, за сегодня 1
Технология гидрометаллургического производства меди
Этот способ не получил широкого распространения, поскольку, при этом можно потерять драгоценные металлы, содержащиеся в медной руде.
Его использование оправдано, когда порода бедная – содержит менее 0,3% красного металла.
Как получить медь гидрометаллургическим способом?
Вначале порода измельчается до мелкой фракции. Затем помещается в щелочной состав. Чаще всего используют растворы серной кислоты или аммиака. Во время реакции медь вытесняется железом.
Оставшиеся после выщелачивания растворы солей меди проходят дальнейшую обработку – цементацию:
- в раствор помещают железную проволоку, листы или прочие обрезки;
- в ходе химической реакции железо вытесняет медь;
- в результате металл выделяется в виде мелкого порошка, в котором содержание меди достигает 70%. Дальнейшее очищение происходит путем электролиза с использованием катодной пластины.
Технология извлечения металла
Для отделения породы, не содержащей ценный компонент, используют метод флотации. Только незначительное количество сырья, содержащего медь в повышенной концентрации, подвергается непосредственной плавке. Выплавка металла предполагает сложный процесс, включающий такие операции:
- обжиг;
- плавка;
- конвертирование;
- рафинирование огневое и электролитическое.
Плавка сырья.
В процессе обжига сырья содержащиеся в нем сульфиды и примеси превращаются в оксиды (пирит превращается в оксид железа). Газы, выделяющиеся при обжиге, содержат оксид серы и используются для производства кислоты.
Оксиды металлов, образованные в результате влияния температурного градиента на породу, при обжиге отделяются в виде шлака. Жидкий продукт, полученный при переплавке, подвергается конвертированию.
Из черновой меди извлекают ценные компоненты и удаляют вредные примеси путем огневого рафинирования и другие металлы путем насыщения жидкой смеси кислородом с последующим разливом в формы. Отливки используются в качестве анода для электролитического способа очистки меди.
Сырье, в котором находятся медь и никель, подвергается обогащению по схеме выборочной флотации с целью получения концентрата металлов. Железомедные руды подвергаются магнитной сепарации.
Руды медистых песчаников и сланцев, жильных пород и самородного металла перерабатываются с целью извлечения медного концентрата. Обогащение производится гравитационным способом.
Метод флотации применяется для смешанных и окисленных руд, но чаще используется химический способ и бактериальное выщелачивание.
Высокое содержание меди характерно для концентратов, извлеченных из халькозина и борнита, а низкое — для халькопирита.
Обогащение руды с незначительным содержанием меди могут проводить гидрометаллургическим способом, состоящим в выщелачивании меди серной кислотой. Из полученного в результате процесса раствора выделяют медь и сопутствующие металлы, в том числе драгоценные.
Особенности меди: ее состав, структура и технология производства
Медь, которая относиться к цветным металлам, известна с давних пор. Ее производство было изобретено раньше, чем люди начали изготавливать железо.
По предположениям активное ее использование произошло в результате ее доступности и достаточно простого извлечения из содержащих медь соединений и сплавов.
Итак, давайте рассмотрим сегодня свойства и состав меди, страны мира-лидеры по производству меди, изготовление изделий из нее и особенности этих сфер.
Медь обладает высоким коэффициентом электропроводимости, что послужило росту ее ценности, как электротехнического материала. Если ранее на электропровод тратилось до половины всей произведенной в мире меди, то сейчас с этими целями используется алюминий, как более доступный металл. А сама медь становиться наиболее дефицитным цветным металлом.
В этом видео рассмотрен химический состав меди:
Структурный состав меди включает в себя множество кристаллов: никель, золото, кальций, серебро, свинец и многие другие. Все металлы, входящие в ее структуру, отличаются относительной мягкостью, пластичностью и простотой обработки. Большинство таких кристаллов в сочетании с медью образуют твердые растворы с непрерывными рядами.
Элементарная ячейка данного металла представляет собой кубическую форму. На каждую такую ячейку приходится по четыре атома, располагающихся на вершинах и центральной части грани.
Химический состав
Состав меди в процессе ее производства может включать в себя ряд примесей, которые влияют на структуру и характеристики конечного продукта. При этом их содержание должно регулироваться как по отдельным элементам, так и по их суммарному количеству. К примесям, которые встречаются в составе меди, можно отнести:
- Висмут. Этот компонент негативно сказывается как на технологических, так и на механических свойствах металла. Именно поэтому он не должен превышать 0,001% от готового состава.
- Кислород. Считается наиболее нежелательной примесью в составе меди. Его предельное содержание в сплаве составляет до 0,008% и стремительно сокращается в процессе воздействия высоких температур. Кислород негативно отражается на пластичности металла, а также на его устойчивости к коррозии.
- Марганец. В случае изготовления проводниковой меди негативно отображается данный компонент на ее токопроводимости. Уже при комнатной температуре быстро растворяется в меди.
- Мышьяк. Этот компонент создает твердый раствор с медью и практически не влияет на ее свойства. Его действие по большей мере направлено на нейтрализацию негативного воздействия от сурьмы, висмута и кислорода.
- Никель. Образует твердый раствор с медью и при этом снижает ее тепло- и электропроводность.
- Олово. Создает твердый раствор и способствует усилению теплопроводности.
- Селен, сера. Эти два компонента имеют одинаковое воздействие на конечный продукт. Они организуют хрупкое соединение с медью и составляют не более 0,001%. При увеличении концентрации резко снижается степень пластичности меди.
- Сурьма. Данный компонент хорошо растворяется в меди, поэтому оказывает минимальное воздействие на ее конечные свойства. Допускается ее не больше 0,05% от общего объема.
- Фосфор. Служит главным раскислителем меди, предельная растворимость которого составляет 1,7% при температуре 714°С. Фосфор, в сочетании с медью, не только способствует ее лучшему свариванию, но и улучшает ее механические свойства.
- Цинк. Содержится в небольшом количестве меди, практически не влияет на ее тепло- и электропроводность.
Далее будут рассмотрены процесс и правильная последовательность производства меди.
Области применения меди
Как в чистом виде, так и в сочетании со сплавами медь активно используется в различных промышленных областях:
- Благодаря своим свойствам, она получила широкое распространение в области электротехники. Более половины всего добытого материала уходит на производство всевозможных электроприборов и электропередач.
- Из чистой меди изготавливается кабели для электропередач, различные составляющие для электрических генераторов, медная проволока и прочее.
- В сочетании со сплавами этот материал можно встретить в автомобильной области.
- В результате своей высокой теплопроводности также применяется при производстве теплотрасс и нагревательных устройств.
Сплавы меди получили применение в химическом производстве, отлично зарекомендовав себя.
О применении меди в гальванопластике смотрите видео ниже:
Преимущества и недостатки обработки
Неоспоримым свойством меди выступает высокая электропроводность. Она применяется в строительстве и изготовлении электротехники. Механические параметры у металла достаточно низкие, поэтому в качестве чистого конструкционного материала используется не часто.
Преимущества отжига:
- обработка выводит из металла вредные вещества, очищает от бактерий;
- заготовка становится мягкой и эластичной, выдерживает давление свыше 200 атмосфер;
- материал приобретает устойчивость к коррозии;
- увеличение твердости — деталь можно изгибать в несколько раз, не боясь появления трещин;
- уменьшение остаточного напряжения при неполном отжиге.
Недостатков значительно меньше, но все же они есть:
- материалу необходимо медленное охлаждение;
- медь — дорогой материал;
- при неправильной обработке мягкий металл можно повредить.
Разновидности медных руд
Существует девять геологических видов медных руд, имеющих промышленное значение:
- Железно-никелевые руды, залегающие в магматических горных породах.
- Медистые песчаники и сланцы. Стратиформные запасы составляют 30% запасов меди и поэтому занимают второе место в данном списке.
- Медно-никелевые. Залежи отличаются разнообразием форм с крупными вкраплениями искомого металла.
- Медно-порфировые. Они являются безусловными лидером и обеспечивают 40% мировой добычи меди.
- Карбонатитовые. Уникальны тем, что имеется всего лишь одно месторождение в мире, кроме того в их составе присутствуют щелочные соединения.
- Кварцево-сульфидные. Существенной роли в обеспечении добычи не играют.
- Самородные. Располагаются в местах окисления рудников медно-сульфидных руд.
- Скарновые. Размещаются среди известняков и отличаются крайней неоднородностью морфологической структуры.
Медь в перечисленном списке руд бывает представлена в сульфидной, оксидной или смешанной форме, что определяет соответствующие разновидности залежей. По виду своего строения в породах залежи подразделяются на вкраплённые, массивные и сплошные текстуры. В ближайшей перспективе этот список могут пополнить руды, залегающие на дне морей, океанов, а также конкреции урановых месторождений.
Способы производства меди
Среди способов производства меди из руд с концентратами выделяют пирометаллургический метод и гидрометаллургический. Последний не получил широкого распространения. Это продиктовано невозможностью одновременного с медью восстановления прочих металлов. Он используется для обработки окисленной или самородной руды с бедным содержанием меди. Отличаясь от него, пирометаллургический способ позволяет разработку любого сырья с извлечением всех компонентов. Очень эффективен он для подвергающихся обогащению руд.
Основной операцией такого процесса производства меди служит плавка. При ее производстве используют медные руды или их обожженные концентраты. В ходе подготовки к данной операции схемой производства меди предусмотрено их обогащение способом флотации. При этом руды, содержащие наряду с медью ценные элементы: теллур или селен, золото с серебром, стоит обогащать в целях одновременного перехода данных элементов в медный концентрат. Образованный таким методом концентрат может содержать до 35% меди, столько же железа, до 50% серы, а также пустую породу. Обжигу он подвергается в целях снижения до приемлемого содержания в нем серы.
Концентрат обжигается в преимущественно окислительной среде, что позволяет удалить примерно половины содержания серы. Полученный таким образом концентрат при переплавке дает довольно содержательный штейн. Еще обжиг помогает снизить вдвое расход топлива отражательной печью. Достигается это при качественном смешении состава шихты, обеспечивающем ее нагревание до 600ºС. Но богатые медью концентраты лучше перерабатывать, не обжигая, так как после этого возрастают утраты меди с пылью и в шлаке.
Итогом такой последовательности производства меди является деление объема расплава надвое: на штейн-сплав и шлак-сплав. Первую жидкость, как правило, составляют медные сульфиды и железные, вторую – окислы кремния, железа, алюминия и кальция. Переработку концентратов в сплав штейн ведут при помощи электрической либо отражательной печей различных видов. Чисто медные либо сернистые руды лучше плавить с помощью шахтных печей. К последним также стоит применить медно-серное плавление, позволяющее улавливать газы, одновременно извлекая серу.
В специальную печь небольшими порциями загружаются медные руды с кокс, а также известняки и оборотные продукты. Верхняя часть печи создает восстановительную атмосферу, нижняя часть – окислительную. По мере расплавления нижнего слоя масса медленно спускается вниз для встречи с разогретыми газами. Верхняя часть печи нагрета до 450 ºС, а температура отходящих газов составляет 1500 ºС. Это необходимо при создании условий очищения от пыли еще до того, как начнется выделение паров с серой.
В результате такой плавки получают штейн, включающий от 8 до 15% меди, шлак, главным образом содержащий известь с железным силикатом, а еще колошниковый газ. Из последнего после предварительного осаждения пыли удаляют серу. Задача увеличения в штейн-сплаве процента Cu при производстве меди в мире решается применением сократительной плавки. Она заключается в помещении в печь наряду со штейном кокса, флюса из кварца, известняка.
При нагревании смеси происходит процесс восстановления медных окисей и железных оксидов. Сплавляемые друг с другом железные и медные сульфиды составляют штейн первоначальный. Расплавляемый железный силикат при стекании вдоль поверхностей откосов принимают в себя прочие компоненты, пополняя шлак. Результатом такой плавки является получение обогащенного штейна со шлаком, включающих медь до 40% и 0,8% соответственно. Драгоценные металлы, такие как серебро с золотом, почти не растворяясь в сплаве шлака, целиком оказываются в сплаве штейна.
Получение меди
После добычи руды возникает следующая проблема: как извлечь из неё необходимый материал? Существует несколько способов.
Одна из древнейших технологий заключалась в сжигании малахитовых руд с ограниченным доступом воздуха. Размещённая в горшках масса, смешанная с углём, сгорала, выделяя при этом угарный газ. Что приводило к достижению желаемого результата – получению достаточно чистой для своего времени меди.
Понятно, что за прошедшие века методы и способы переработки руд претерпевали серьёзные изменения движимые целью достижения наиболее оптимальных результатов при любом виде первичного сырья. Вот почему современная металлургия базируется на трёх основных способах получения меди.
Пирометаллургический метод
Основанный на проведении высокотемпературных процессов, пирометаллургический метод как нельзя лучше подходит для сульфидных руд, подчас достаточно бедных в отношении концентрации меди. Он позволяет извлекать металл даже при содержании его в 0,5%.
Но прежде всего исходное сырьё подвергается обогащению в процессе флотации. Суть его заключается в тщательном измельчении руды, заливке её водой, добавлении туда сложных органических флотореагентов. Они обволакивают частицы минерала, содержащие в своём составе сплавы меди, придавая им несмачиваемость.
На втором этапе этого процесса в растворе создаётся пена, пузырьки которой забирают покрытые органикой частицы. Происходит это под воздействием потока воздуха, в результате чего образования всплывают на поверхность, откуда в дальнейшем забираются. Насыщенная медными соединениями пена собирается, отжимается и высушивается.
После чего полученный концентрат подвергают обжигу при температуре 14000 C. Это необходимо для удаления серы и окисления сульфидов. Затем производят высокотемпературную (14 0000 – 15 0000C) плавку в шахтных печах для получения сплава железа и меди – штейна. Далее в процессе бессемеровской плавки в конвертере под воздействием кислорода получают оксид, а затем и саму черновую медь, содержащую в себе 90,95% металла. При этом сера переходит в кислотный остаток, а железо – в силикатный шлак.
Получить из черновой субстанции чистую медь можно с помощью:
- огневого рафинирования,
- электролиза,
- экзотермической реакции восстановления под воздействием водорода.
Гидрометаллургический метод
Для извлечения меди и ряда других металлов из полиметаллических руд, содержащих в своём составе менее 0,5% искомого минерала, применяют гидрометаллургический метод.
Добытые минералы растворяют с помощью неконцентрированной серной кислоты или аммиака. Из образовавшихся жидкостей в процессе реакции вытеснения получают медь. Для проведения реакции используется металлическое железо.
Электролизный метод
Метод предназначен для получения чистой меди в процессе электролитической реакции.
Его технология заключается в изготовлении чистых медных тонких листовых катодов и толстых пластинчатых анодов из черновой меди. Помещённые затем в ванну, заполненную медным купоросом, они вступают в реакцию под воздействием электрического тока. Происходит растворение меди на анодах и её осаждение на катодах. Освободившиеся примеси удаляют химическими методами.
Медные трубы
Области применения
Одной из областей применения является электротехническая промышленность. Кабели и электрические провода включают жилы из чистого металла, что увеличивает их электропроводность. Сплавы с никелем подходят для приборостроения, соединения с вольфрамом – это нити накаливания в лампочках.
Применение меди
Латунь применяется в пищевой и химической промышленности. В сельском хозяйстве медь используют как удобрение. Медный купорос известен садоводам, им обрабатывают растения для защиты от болезней и вредителей.
В строительстве такие сплавы просто незаменимы. Кровельное покрытие с образовавшейся на нем патиной имеет красивый вид и очень долговечно.
Медицинская промышленность не обходится без этого химического элемента. Широко используется в лекарствах.
В машиностроении из бронзы делают подшипники, теплообменники, различные конструктивные элементы механизмов. Металл используют в порошковой металлургии для изготовления фрикционных деталей.
Добыча золота
Среди новейших технологий в цветной металлургии важное место занимает добыча золота. Для получения золотой руды ученые разработали следующие современные способы:
- Скважинная гидродобыча золота. В основе метода лежит подача жидкости по скважинам, которая размывает породу. Далее происходит откачка жидкого раствора с частичками металла на поверхность уже по другим скважинам.
- Золото можно извлекать из россыпей и руд микробиологическим способом с применением специальных бактерий Thiobacillus ferroxidans. Они делают возможным процесс выщелачивания драгоценного металла из концентратов. Эта методика значительно экономит бюджет, так как не требуется дорогостоящий обжиг. Кроме того, она экологична, потому что не происходит загрязнения воздуха токсическими испарениями.
Области применения
Отраслей, где находит своё применение этот древнейший из металлов, множество:
Металлургия. Именно эта отрасль выпускает множество готовых изделий в виде
- проката: листов, плит, лент, труб, прутков, шин, проволоки;
- сплавов: бронзы, латуни, мельхиора, константана, манганина нейзельбера.
Те и другие изделия, и промежуточные материалы находят широкое применение в технических отраслях, при производстве вооружений, в декоративно-прикладном искусстве. Отличительными особенностями сплавов являются – сохранение механических свойств, высокий уровень скольжения в парном сочетании и антикоррозийная устойчивость.
- Машиностроение. Здесь используется значительная часть медесодержащей продукции, полученной в результате металлургических процессов. Это – высокопрочные сплавы с алюминием, оловом, кремнием, цинком. А также разнообразные детали машин и механизмов. Одним из направлений является изготовление твёрдых припоев, опять же находящих применение в машиностроительной отрасли.
- Химия. Катализатором процесса полимеризации ацетилена выступает опять же медь.
- Электротехника. Благодаря высокой электрической проводимости, этот металл стал незаменим в качестве проводника при изготовлении шин, кабелей, проводов, дорожек печатных плат. Они, в свою очередь, входят в состав множества электротехнических изделий, где также присутствуют медные элементы конструкций и сплавы данного металла. Кроме того, медь находит использование в химических источниках тока и при изготовлении высокотемпературных сверхпроводящих материалов.
- Энергетика. Одним из важных направлений использования меди является изготовление на её основе труб, являющихся составной частью систем газоснабжения, водоснабжения, отопления, охлаждения, кондиционирования и обеспечения технологическими жидкостями.
- Ювелирное дело. Специфика изготовления драгоценных изделий, служащих в качестве украшений, требует сочетания целого ряда противоречивых факторов. Чтобы придать прочность золоту, в него добавляют медь. Податливость материала не уменьшается, а срок службы и устойчивость к механическим воздействиям – существенно возрастают.
Материаловед
Для получения меди применяют медные руды (содержание меди – 1…6 %), а также отходы меди и ее сплавов.
Медь в природе находится в виде сернистых соединений (CuS, Cu2S), оксидов (CuO, Cu2O), гидрокарбонатов (Cu(OH)2), углекислых соединений (CuCO3) в составе сульфидных руд и самородной металлической меди.
Наиболее распространенные руды – медный колчедан и медный блеск, содержащие 1…2 % меди.
90 % первичной меди получают пирометаллургическим способом, 10% — гидрометаллургическим.
Гидрометаллургический способ – получение меди путём её выщелачивания слабым раствором серной кислоты и последующего выделения металлической меди из раствора. Метод используют при переработке бедных руд, он не позволяет извлекать попутно с медью драгоценные металлы.
Получение меди пирометаллургическим способом состоит из обогащения, обжига, плавки на штейн, продувки в конвертере, рафинирования.
Обогащение медных руд производится методом флотации и окислительного обжига.
Метод флотации основан на использовании различной смачиваемости медьсодержащих частиц и пустой породы. Сущность флотации состоит в избирательном прилипании некоторых минеральных частиц, взвешенных в водной среде, к поверхности пузырьков воздуха, с помощью которых эти минеральные частицы поднимаются на поверхность. Метод позволяет получать медный порошкообразный концентрат, содержащий 10…35 % меди.
Медные руды и концентраты, содержащие большие количества серы, подвергаются окислительному обжигу. В процессе нагрева концентрата или руды до 700…800 0C в присутствии кислорода воздуха сульфиды окисляются и содержание серы снижается почти вдвое против исходного. Обжигают только бедные (с содержанием меди 8…25 %) концентраты, а богатые (25…35 % меди) плавят без обжига.
После обжига руда и медный концентрат подвергаются плавке на штейн, представляющий собой сплав, содержащий сульфиды меди и железа (Cu2S, FeS). Штейн содержит 20…50 % меди, 20…40 % железа, 22…25 % серы, около 8 % кислорода и примеси никеля, цинка, свинца, золота, серебра. В зависимости от химического состава руды и ее физического состояния штейн получают либо в шахтных печах, если сырьем служит кусковая медная руда, содержащая много серы, либо в отражательных печах, если исходным продуктом является порошкообразный флотационный концентрат. Чаще всего плавка производится в пламенных отражательных печах. Температура в зоне плавки — 1450 0C.
Полученный медный штейн, в целях окисления сульфидов и железа подвергают продувке сжатым воздухом в горизонтальных конвертерах с боковым дутьём. Образующиеся окислы переводят в шлак, а серу – в SO2. Тепло в конвертере выделяется за счёт протекания химических реакций без подачи топлива. Температура в конвертере составляет 1200…1300 ºC. Таким образом, в конвертере получают черновую медь, содержащую 98,4…99,4 % меди, 0,01…0,04 % железа, 0,02…0,1 % серы и небольшое количество никеля, олова, сурьмы, серебра, золота. Эту медь сливают в ковш и разливают в стальные изложницы или на разливочной машине.
Черновую медь рафинируют для удаления вредных примесей, проводят огневое, а затем электролитическое рафинирование.
Сущность огневого рафинирования черновой меди заключается в окислении примесей, имеющих большее сродство к кислороду, чем медь, удалении их с газами и переводе в шлак. После огневого рафинирования получают медь чистотой 99…99,5 %. Её разливают в изложницы и получают чушки для дальнейшей выплавки сплавов (бронзы и латуни) или слитки для электролитического рафинирования.
Электролитическое рафинированиепроводят для получения чистой от примесей меди (99,95 % Cu).
Электролиз осуществляют в ваннах, где анод изготавливают из меди огневого рафинирования, а катод – из тонких листов чистой меди. Электролитом служит водный раствор CuSO4 (10…16 %) и H2SO4 (10…16 %).
При пропускании постоянного тока анод растворяется, медь переходит в раствор, а на катодах разряжаются ионы меди, осаждаясь на них слоем чистой меди.
Примеси осаждаются на дно ванны в виде шлама, который идёт на переработку в целях извлечения металлов: серебра, сурьмы, селена, теллура, золота и др…
Катоды выгружают через 5…12 дней, когда их масса достигнет 60…90 кг. Их тщательно промывают, а затем переплавляют в электропечах.
Медь по чистоте подразделяется на марки: М0 (99,95 % Cu), М1 (99,9 %), М2 (99,7 %), М3 (99,5 %), М4 (99 %).
3.2 Получение медного купороса при окислении меди хлорной медью. Технология 4.
Этот метод основан на образовании хлористой меди из хлорной и металлической меди:
Cu + CuCl2 = 2CuCl
(хлористую медь получают также хлорированием цементной меди в растворе поваренной соли). Хлористую медь окисляют воздухом с образованием оксихлорида меди:
6CuCl + 1,5O2+3H2O = 3 [Cu(OH)2*CuCl2]
Оксихлорид растворяют в серной кислоте, в результате чего образуется раствор сульфата меди и регенерируется хлорная медь
3[Cu(OH)2*CuCl2] + 3H2SO4 = 3CuSO4 + 3CuCl2 + 6 H2O
Получение оксихлорида меди осуществляют в бетонном баке, куда загружают медь и заливают раствор хлорной меди. После этого продувают массу воздухом, пока вся металлическая медь не перейдет в нерастворимый оксихлорид. После отстаивания и декантации пульпу растворяют при нагревании в серной кислоте. При охлаждении раствора из него кристаллизуется CuSO4 * 5H2O. Маточный раствор возвращают в процесс. Этим способом можно получать также хлорокись меди.