Стеллит, его характеристики, свойства и назначение

Свойства[править | править код]

Основные свойства стеллитов, определяющие сферу их применения – ударопрочность, жаростойкость порядка 800°С, высокая коррозионная стойкость. Стеллиты пригодны к литью, наплавке и напылению, в том числе при восстановлении инструмента в условиях предприятия-пользователя. Коэффициент теплового расширения стеллита близок к таковому для легированных инструментальных сталей. Стеллит в общем случае не требует термообработки, нечувствителен к отпуску. Для формовки и заточки наплавленных зубьев используются обычные абразивные круги (эльбор, карборунд, корунд).

Применение стеллита ограничивают высокая стоимость сплава, сложность обработки и выплавки в сравнении с легированной сталью, а также повышенные требования к чистоте исходных материалов. В определённых условиях (материал основы, температурные режимы нанесения) стеллитовые покрытия склонны к растрескиванию, и в ответственных применениях требуется особый контроль на микротрещины.

Отличительные характеристики

Среди наиболее востребованной электротехнической продукции на рынке – проволока нихром. Удельное сопротивление этого компонента электронагревательной техники исключительно высоко, что позволяет иметь широкий спрос.

Важной особенностью металла является стойкость его к высокотемпературному окислению в нормальных и агрессивных условиях. Ключевую роль тут играет хром. Элемент образовывает на поверхности соответствующую оксидную пленку, которая осуществляет защитную функцию

Она же отвечает за соответствующий темный цвет материала, который сменяется характерным бело-серым при механическом снятии окисленного слоя

Элемент образовывает на поверхности соответствующую оксидную пленку, которая осуществляет защитную функцию. Она же отвечает за соответствующий темный цвет материала, который сменяется характерным бело-серым при механическом снятии окисленного слоя.

Стоит отметить, что непосредственный контакт с кислотами все же разрушает его, даже более, чем коррозионностойкий вольфрам.

Двухкомпонентный сплав не имеет магнитных характеристик. Они возникают для многокомпонентных его модификаций, однако имеют ослабленные показатели.

Нихромовая проволока отличается жесткостью, не поддается простому силовому влиянию.

Систематизируем информацию о том, как определить проволоку нихром, преимущественно, как отличить ее от внешне похожих материалов:

  1. Белый цвет нового металла, темный – ранее проработанного.
  2. Отрицательная или минимальная магнитность.
  3. Жесткость.
  4. Разрушение под действием кислот, устойчивость к окислению под влиянием высоких температур.

4.6. Ферриты

Это соединения оксида железа Fe2O3 с оксидами других металлов: ZnO, NiO. Ферриты изготавливают из порошкообразной смеси оксидов этих металлов.

Название ферритов определяется названием одно-, двухвалентного металла, оксид которого входит в состав феррита:

Если ZnO – феррит цинка

NiO – феррит никеля.

Ферриты имеют кубическую кристаллическую решетку, подобную решетке шпинели, встречающейся в природе: MgO·Al2O3. Большинство соединений указанного типа, как и природный магнитный железняк FeO·Fe2O3, обладает магнитными свойствами. Однако феррит цинка и феррит кадмия являются немагнитными. Исследования показали, что наличие или отсутствие магнитных свойств определяется кристаллической структурой этих материалов, и в частности расположением ионов двухвалентных металлов и железа между ионами кислорода. В случае структуры обычной шпинели, когда в центре кислородных тетраэдров расположены ионы Zn++ или Cd++, магнитные свойства отсутствуют. При структуре так называемой обращенной шпинели, когда в центре кислородных тетраэдров расположены ионы Fe+++, материал обладает магнитными свойствами. Ферриты, в состав которых кроме оксида железа входит только один оксид, называется простым. Химическая формула простого феррита:

MeOxFe2O3 или MeFe2O4

Феррит цинка – ZnFe2O4, феррит никеля – NiFe2O4.

Не все простые ферриты обладают магнитными свойствами. Так CdFe2O4 является немагнитным веществом.

Наилучшими магнитными характеристиками обладают сложные или смешанные ферриты, представляющие твердые растворы одного в другом. В этом случае используются и немагнитные ферриты в сочетании с простыми магнитными ферритами. Общая формула широко распространенных никель-цинковых ферритов имеет следующий вид:

mNiO·Fe2O3 + nZnO·Fe2O3 + pFeO·Fe2O3, (4.8)

где коэффициенты m, n и p определяют количественные соотношения между компонентами. Процентный состав компонентов играет существенную роль в получении тех или иных магнитных свойств материала.

Наиболее широко в РЭА применяют смешанные магнитно-мягкие ферриты: никель-цинковые, марганец-цинковые и литий-цинковые.

Достоинства ферритов – стабильность магнитных характеристик в широком диапазоне частот, малые потери на вихревые токи, малый коэффициент затухания магнитной волны, а также простота изготовления ферритовых деталей.

Недостатки всех ферритов – хрупкость и резко выраженная зависимость магнитных свойств от температуры и механических воздействий.

Применение[править | править код]

Стеллит широко применяется для наплавки зубьев лесопильных полотен и дисков, ножей и фрез деревообрабатывающих станков. Благодаря ударопрочности стеллита, более прочной связи с основанием, чем при пайке латунью, и близким ТКР полотна и наплавки, стойкость такого инструмента в работе по заготовкам неправильной формы с неоднородностями и посторонними включениями выше, чем напаянного более твёрдыми спечёнными сплавами.

В силу тех же свойств стеллиты нашли применение для упрочнения и восстановительного ремонта рабочих органов землеройных машин, дробилок и другого строительного, горнодобывающего и перерабатывающего оборудования.

В конструкциях автоматического огнестрельного оружия стеллит используется для изготовления вкладок в стволы (лайнеров) и деталей механизма, подверженных трению и эрозии при стрельбе. В частности, варианты стволов со стеллитовыми вставками в первой трети со стороны казенной части имеются для американских пулемётов Браунинг M2 и M60. Лейнированные стволы могут сохранять работоспособность внутренней поверхности, будучи раскалены в процессе стрельбы до появления мелких частиц отслаивающейся окалины на наружных слоях, без потери свойств при последующих циклах нагрева и охлаждения. На испытаниях M60 было отстреляно 50 метров ленты одной очередью, ствол раскалился докрасна, но после остывания остался практически неповреждённым.

Благодаря сочетанию твёрдости, жаропрочности и коррозионной стойкости стеллит используется для изготовления и упрочнения наиболее напряжённых деталей тепловых двигателей. Это клапаны и клапанные сёдла поршневых ДВС, входные кромки и установочные поверхности рабочих лопаток паровых и газовых турбин, регулирующие детали паровых и газовых трактов. Срок службы упрочнённых таким образом элементов часто определяется усталостными характеристиками основного материала, а не износом покрытия.

Также стеллит используется для покрытия деталей кислотостойкой химической аппаратуры, шнеков питателей и дозаторов, изготовления шариковых и регулирующих клапанов и в других узлах, где требуется стойкость к истиранию, эрозии, химическому воздействию, кавитации в сочетании с ударопрочностью, сравнительной лёгкостью нанесения и обработки. Известны проблемы, вызванные применением стеллита и других кобальтсодержащих сплавов в аппаратуре атомных электростанций, где вымывание небольших количеств кобальта технологическими жидкостями и их последующее нейтронное облучение в реакторе приводило к образованию кобальта-60 и увеличению жёсткого гамма-облучения персонала.

Благодаря биологической инертности стеллиты используются для изготовления медицинских имплантатов, а также в зубопротезировании. В частности, с применением стеллита был изготовлен первый коммерчески доступный искусственный сердечный клапан (Starr—Edwards, 1960 г).

Для нанесения стеллита на металл основы первоначально применялась наплавка ацетилен-кислородным пламенем, затем электродуговая наплавка под флюсом и в защитных газах, плазменная и лазерная наплавка, газотермическое и плазменное напыление. Новые технологии позволяют получить равномерное покрытие заданной толщины на большой площади, избежать нежелательного перегрева детали, в отдельных случаях – обойтись без финишной обработки наплавленной поверхности. Напайка готовых стеллитовых элементов бывает оправдана при желании использовать имеющееся оборудование и технологию напайки спечённых твёрдых сплавов, либо при особых требованиях по допустимому нагреву детали, характеристикам шва и т.п.

Область применения

Пермаллой применяется при создании сердечников для электромагнитных катушек. Этот элемент электротехнических схем используется в трансформаторах и электроприборах для изменения характеристик электрического тока. В сердечниках из пермаллоя чаще применяются пластины-кольца, изготовленные из этого материала.

Сплав используется в звуковой аппаратуре. Там материал встречается в элементах звукозаписывающих головок. Здесь ключевым эксплуатационным свойством является изменения векторов намагниченности.

Пермаллой находит применение в различных датчиках, к примеру, материал используется в двухосном магнитометре HMC1002.

Основные преимущества и недостатки нихрома

Основные плюсы нихрома:

  • Прочность и пригодность для сложных койлов;
  • Пластичность;
  • Устойчивость к деформации при высоких температурах.

Основные минусы нихрома:

  • Высокая стоимость по сравнению с канталом;
  • Ниже сопротивление.

Ознакомьтесь с ассортиментом готовых намоток (койлов) в разделе «Расходники для ОА»

Вейпинг предоставляет большое поле для экспериментов людям, которые их любят. Например, можно попробовать заменить обычный танк на обслуживаемый атомайзер, а вместо того, чтобы приобретать готовые спирали, наматывать их самостоятельно.

В этой статье мы попытаемся простыми словами объяснить все сложные моменты, поговорим о видах проволоки и о том, какие из них наиболее популярны в намотках для вейпа

Основное внимание уделим спиралям из одной проволоки и не будем затрагивать сложные конфигурации, когда для намотки используется 2 или более соединенных в 1 провод проволок

Основные преимущества и недостатки нихрома

Основные плюсы нихрома:

  • Прочность и пригодность для сложных койлов;
  • Пластичность;
  • Устойчивость к деформации при высоких температурах.

Основные минусы нихрома:

  • Высокая стоимость по сравнению с канталом;
  • Ниже сопротивление.

Ознакомьтесь с ассортиментом готовых намоток (койлов) в разделе «Расходники для ОА»

Вейпинг предоставляет большое поле для экспериментов людям, которые их любят. Например, можно попробовать заменить обычный танк на обслуживаемый атомайзер, а вместо того, чтобы приобретать готовые спирали, наматывать их самостоятельно.

В этой статье мы попытаемся простыми словами объяснить все сложные моменты, поговорим о видах проволоки и о том, какие из них наиболее популярны в намотках для вейпа

Основное внимание уделим спиралям из одной проволоки и не будем затрагивать сложные конфигурации, когда для намотки используется 2 или более соединенных в 1 провод проволок

Латунь лс59-1: применение

Из данного сплава получают широкий ассортимент различных метизов: болты, гайки, втулки, шестеренки, зубчатые колеса. Благодаря превосходным технологическим и эксплуатационным свойствам латуни из неё также получают всевозможные декоративные элементы и полуфабрикаты для их изготовления. На производство латунь ЛС59 поставляется в виде чушек, блоков, слитков или шашек круглого сечения любого размера.

Латунному сплаву марки ЛС59 присущи хорошие антифрикционные свойства, поэтому из этого материала часто делают мелкие детали, работающие при высоком трении. Примером таких изделий являются подшипники скольжения.

Ассортимент изделий из латуни ЛС59-1 также включает следующую продукцию:

  • прутки
  • круги
  • ленты
  • полосы
  • листы
  • профили
  • плиты
  • проволоку
  • трубы и пр.

Проволока: толщина, сопротивление и время нагревания

Проволока может быть сделана из различных металлов или сплавов, но помимо материала есть другие характеристики, которыми можно максимально точно описать проволоку.

Первым таким параметром является диаметр проволоки, в России это десятые доли миллиметра, в Америке же существует такое понятие как калибр проволоки. Проволоку нужного диаметра производят путем волочения более крупного провода сквозь отверстия меньшего размера, а количество таких волочений и будет составлять значение калибра. Чем это число больше, тем диаметр меньше. Наиболее популярные калибры: 32, 30, 26, 24, 22.

От диаметра проволоки обычно зависят ее сопротивление (чем меньше площадь, тем больше сопротивление) и время, необходимое для разогрева проволоки (чем меньше сечение, тем быстрее проволока нагревается).

Некоторые вейперы упоребляют словосочетание “время разгона” — это то время, которое необходимо, чтобы разогреть проволоку до температуры, при которой соприкасающаяся с ней жидкость испаряется.

Таблица 2.

Базовое масло/Загуститель Li-мыло Li-комплекс Al-комплекс Ca-комплекс
Минеральное – пары трения ММ; – низкая испаряемость масла; – хорошая стойкость к окислению; – хорошая стойкость к смыванию водой; – защита от коррозии – пары трения ММ, МП, МЭ; – пищевой допуск; – совместимость с пластмассами и эластомерами; – хорошая стойкость к смыванию водой; – высокая несущая способность – пары трения ММ; – отличная водостойкость; – хорошие антикоррозионные свойства; – способность выдерживать очень высокие давления
Полусинтетическое (минеральное + полиальфаолефиновое)   – пары трения ММ, МП, ПП; – низкий коэффициент трения; – хорошая совместимость с большинством пластиков и эластомеров; – хорошие характеристики при низких температурах; – пригодны для долговременного смазывания
Полиальфаолефиновое (PAO) – пары трения ММ, МП, МЭ, ПП, ПЭ; – широкий диапазон рабочих температур; – снижение шума и вибраций; – хорошая совместимость с пластиками; – низкий коэффициент трения – пары трения ММ, МП, МЭ, ПП; – широкий диапазон рабочих температур; – пригодна для долговременной смазки; – хорошие характеристики при низких температурах; – хорошая защита от коррозии – пары трения ММ, МП, МЭ, ПП; – пищевой допуск; – совместимость с пластмассами и эластомерами; – широкий диапазон рабочих температур
Силиконовое – пары трения ММ, МП, МЭ; – широкий диапазон рабочих температур; – хорошие характеристики при низких и высоких температурах; – низкая испаряемость; – высокая стойкость к окислению; – хорошая совместимость с пластмассами и эластомерами; – хорошая устойчивость к смыванию водой – пары трения МП, МЭ, ПП; – широкий диапазон рабочих температур; – высокая стойкость к окислению; – хорошие характеристики при низких температурах; – низкий коэффициент трения; – хорошая защита от коррозии; – отличная совместимость с большинством пластиков и эластомеров
Полиалкиленгликолевое (PAG) – пары трения ММ; – широкий диапазон рабочих температур; – высокая стойкость к окислению; – хорошие показатели при низкой температуре; – защита от коррозии и фреттинг-коррозии; – совместимость с эластомерами; – высокая стойкость к смыванию водой
Полиэфирное (POE) – пары трения ММ; – широкий диапазон рабочих температур; – отличные характеристики при низких температурах; – антикоррозийные свойства; – снижение шума и вибраций – пары трения ММ; – широкий диапазон рабочих температур; – повышенная несущая способность;  – пригодна для долговременной смазки; – высокая адгезия; – пригодна для повышенных скоростей вращения  

Примечание. Обозначение пар трения: ММ – металл/металл; МП – металл/пластик; МЭ – металл/эластомер; ПП – пластик/пластик; ПЭ – пластик/эластомер.

Технология изготовления латуней

Чтобы получить латунный сплав, необходимо выполнить ряд шагов:

  1. Положить медное сырье в глиняную чашу, предварительно его взвесив.
  2. Отправить чашу в специальную печь.
  3. В расплавленную медь кладут кусковой цинк и необходимые добавки.
  4. Полученный сплав перетапливают до однородного состава.

Жидкая горячая латунь разливается по формам. Печи для изготовления сплава обычно работают на твердом топливе – угле.

Проблемой топленых латунных сплавов является испарение цинка. Поэтому плавильные установки оборудуются абсорбирующими системами его улавливания, после чего он вводится в латунный сплав снова. Следующая особенность технологии изготовления сплава – необходимость повторной переплавки. При первичной, латунь дает усадку, и образуются прогибы в изделиях.

Необходимая для плавки латуней температура не может быть ниже +800 С. Точный показатель рассчитывается для каждой марки латуни отдельно. Количество цинка в составе сплавов находится в обратной зависимости с температурой плавления латуни. Вот и вся технология.

Основные свойства различных сплавов алюминия

Давайте рассмотрим основные сплавы на базе алюминия именно с точки зрения их приобретенных свойств.

Сплав меди и алюминия бываетнескольких видов – “чистый”, в котором главными действующими элементами выступают Al и Cu, “медно-магниевый”, в котором помимо меди и алюминия некоторую долю занимает магий и “медно-марганцевый” с легированием марганцем. Такие сплавы часто также называют дюралюминиям, их легко резать и сваривать “точечно”.

Характерная черта дюралюминов в том, что для них берется алюминий с примесями железа и кремния. Как мы уже говорили, обычно присутствие этих элементов ухудшает качество сплава, но данный случай – исключение. Железо при повторной термической обработке сплава повышает его жаростойкость, а кремний выступает катализатором в процессе “старения” дюралюминов. В свою очередь магний и марганец в качестве легирующих элементов делают сплав намного прочнее.

Сплав алюминия и магния имеет разные показатели прочности и пластичности, в зависимости от количества магния. Чем магния меньше, тем меньше прочность изделия из такого сплава и тем выше стойкость к коррозии. Увеличение содержания магния на 1 % приводит к росту прочности до 30 000 Па. В среднем сплавы на основе магния и алюминия содержат до 6% первого. Почему не больше? Если магния в сплаве становится слишком много, изделие из него будет быстро покрываться ржавчиной, а кроме того такие изделия имеют нестабильную структуру, могут треснуть и т.д.

Термообработку сплавов магния с алюминием не проводят, так как она малоэффективна и не дает необходимого эффекта увлечения прочности.

Сплав алюминия с цинком и магнием считается наиболее прочным из всех алюминиевых сплавов, известных на сегодняшний день. Его прочность сравнима с титаном! Во время термообработки большая часть цинка растворяется, что и делает данный сплав таким прочным. Правда использовать в электрической промышленности изделия из таких сплавов невозможно, они не стойки к коррозии под напряжением. Чуть повысить коррозионную стойкость можно, если добавить в состав меди, но показатель все равно останется не удовлетворительным.

Сплав алюминия с кремнием – самый распространенный сплав в литейной промышленности. Поскольку кремний прекрасно растворяется в алюминии при нагреве, то образуемый расплавленный состав замечательным образом подходит для формовочного и фасонного литья. Готовые изделия относительно легко режутся и имеют высокую плотность.

Сплав алюминия с железом, как и сплавы алюминия с никелем практически не встречается “в живую”. Железо добавляют исключительно как вспомогательный элемент для того, чтобы литейный сплав легко отлипал от стенок формы. Никель с свою очередь наиболее известен в производстве магнитов и присутствует в качестве одного из элементов в сплаве алюминий-никель-железо.

Сплав титана и алюминия, такжене встречается в чистом виде и используется только дляувеличения прочности изделий. С той же целью проводится сварка стали и сплавов алюминия.

Изделия

Рассмотренные сплавы также ориентированы на различные методы производства.

  • Стеллит 6 подходит для наплавки и плакирования. Возможна токарная обработка стеллита 6 с применением карбидных режущих инструментов.
  • Тип 1 используют тем же образом. Возможна обработка исключительно путем шлифования.
  • Тип 12 ориентирован на отливку и подходит для наплавки.
  • ПР-C27 представлен в виде прутков и порошка. Оба варианта применяют для наплавки.
  • ПР-ВЗК и ПР-ВЗК-Р также ориентированы на наплавку и представлены в виде прутков.

Степень изменения определяется толщиной наплавленного слоя. Например, через 2 мм сокращается содержание углерода для ВЗК с 1,46 до 1,02% и кобальта с 59,19 до 55,08%. Твердость снижена на 3–4 по Роквеллу.

Детали из стеллена характеризуются высококачественной гладкой поверхностью без дефектов, что повышает устойчивость к истиранию и износу. Так, в сравнении со стеллитовыми изделиями стелленовые имеют на 40% лучшую износостойкость.

Разновидности

Существуют основные сплавы цветных металлов, о которых следует поговорить более подробно. Они применяются чаще всего.

Алюминий и его сплавы

Алюминий — серебристый материал, который хорошо проводит электрический ток, имеет малую удельную массу, низкую температуру плавления. От коррозии он защищен оксидной плёнкой, которая образуется на его поверхности после взаимодействия с кислородом. Соединения на основе этого материала бывают двух типов.

Сплав алюминия

Деформируемые сплавы алюминия

Бывают упрочняемые и неупрочняемые:

  1. К первой группе относятся дюралюминий, смеси с высоким показателем прочности.
  2. Ко второй группе относятся соединения на основе алюминия, к которому добавляется магний или марганец.

Химический состав деформируемых алюминиевых сплавов зависит от группы. Упрочняемые соединения могут дополняться легирующими добавками.

Литейные сплавы на основе алюминия

Алюминиевые литейные сплавы называют силуминами. Это соединение основного металла и кремния. Обладают подобные соединение малой удельной массой, высокими литейными свойствами.

Сплавы на основе меди

Медь — материал красного оттенка. Имеет высокий параметр электропроводности, пластичности. Хорошо обрабатывается, однако имеет низкие литейные характеристики. Основным соединения на основе меди — бронза, латунь.

Латунь

Соединение меди, цинка и других легирующих добавок. Дополнительных компонентов в составе — не более 8%.

Магний и его сплавы

Магний — металл серебристого оттенка. Плавится при низкой температуре, устойчив к развитию коррозии. Его не используют для конструкционных целей, так как материал обладает низкими механическими параметрами.

Магний

Деформируемые сплавы магния

К деформируемым соединениям на основе магния относятся:

  1. Смеси с марганцем — не более 2,5%.
  2. Смесь цинка, магния, алюминия, марганца.
  3. Соединения магния, цинка, циркония, кадмия.

Литейные сплавы магния

Смесь цинка, магния, алюминия применяется при изготовлении деталей для автомобилей, самолётов, кораблей, ракет. Такие материалы отличаются высокими механическими параметрами.

Цинк и его сплавы

Цинк — металл серых оттенков, с высокими параметрами пластичности, вязкости. Устойчив к воздействию влаги. Существует две группы соединений на основе цинка.

Деформируемые цинковые сплавы

Соединения цинка с алюминием, магнием, медью. Изготавливаются в процессе прокатки, опрессовывания, вытяжки. Во время проведения технологических операций отдельные компоненты нагреваются до 300 градусов. Готовые смеси имеют высокие показатели пластичности, прочности.

Литейные цинковые сплавы

Соединения цинка, меди, магния, алюминия. Обладают высоким показателем текучести. Из готовых соединений изготавливаются корпуса для различных приборов, измерительной аппаратуры.

Экранирование кабелей

Защита от магнитного поля необходима при прокладке кабелей. Электрические токи, наводящиеся в них, могут быть вызваны включением бытовой техники в помещении (кондиционеры, люминесцентные светильники, телефоны), а также лифтов в шахтах. Особенно большое влияние эти факторы оказывают на цифровые системы связи, работающие по протоколам с широкой полосой частот. Это связано с малой разницей между мощностью полезного сигнала и помехами в верхней зоне спектра. Кроме этого, электромагнитная энергия, которую излучают кабельные системы, неблагоприятно воздействует на здоровье персонала, работающего в помещении.

Между парами проводов возникают перекрестные наводки, обусловленные присутствием емкостной и индуктивной связи между ними. Электромагнитная энергия кабелей также отражается из-за неоднородностей их волнового сопротивления и ослабляется в виде тепловых потерь. В результате затухания мощность сигнала в конце протяженных линий падает в сотни раз.

В настоящее время в электротехнической промышленности практикуется 3 метода экранирования кабельных трасс:

  • Применение цельнометаллических коробов (из стали или алюминия) или установка металлических вставок в пластиковые. При росте частоты поля экранирующая способность алюминия снижается. Недостатком также является дороговизна коробов. Для длинных кабельных трасс существует проблема обеспечения электрического контакта отдельных элементов и их заземления для обеспечения нулевого потенциала короба.
  • Использование экранированных кабелей. Этот метод обеспечивает максимальную защиту, так как оболочка окружает непосредственно сам кабель.
  • Вакуумное напыление металла на ПВХ-канал. Такой способ малоэффективен на частотах до 200 МГц. «Гашение» магнитного поля меньше в десятки раз по сравнению с укладкой кабеля в металлические короба из-за высокого удельного сопротивления.

Применение проволоки из нихрома

Точное определение проволоки из нихрома даёт ГОСТ 12766.1-90, согласно которому она производится. Полный её сортамент включает следующие виды продукции:

  • для спиральных и других нагревателей открытого типа – для маркировки такой проволоки используют букву Н;
  • для трубчатых нагревателей – обозначают аббревиатурой ТЭН;
  • для резисторов – маркируются буквой С.

В зависимости от марки металла нихромовая проволока изготавливается диаметром от 0,4–3, до 0,1–7,5 мм. Маркировка этой продукции содержит следующую информацию в такой очерёдности:

  • диаметр;
  • марка сплава;
  • назначение;
  • ссылка на нормативный документ.

Отсутствие в маркировке обозначения сферы применения по умолчанию означает, что проволока предназначена для производства резисторов. Помимо проволоки, для изготовления нагревательных элементов (Н) и резисторов (С) используют ленту из нихрома, производство которой регламентирует ГОСТ 12766.2-90.

В зависимости от диаметра проволока из нихрома для промышленных потребителей поставляется намотанной на катушки, оправки или в мотках. Чтобы не задаваться вопросом, как определить, из нихрома проволока или нет, следует пользоваться услугами надёжного поставщика. Напоминаем, что нихром входит в число наиболее дорогостоящих сплавов. Поэтому не стоит приобретать такую продукцию в случайных местах.

При покупке нихромовой проволоки необходимо обращать внимание на целостность упаковки, которая в том числе предохраняет проволоку от спутывания. Отсутствие ярлыка на упаковке также даёт повод для сомнений, не позволяя определить, что в ней проволока из нихрома необходимой вам марки

Ошибки выбора нихромовой проволоки являются основной причиной раннего выхода из строя изготовленных из неё нагревательных элементов, поскольку они рассчитаны на разный температурный режим эксплуатации. При правильном выборе проволоки из нихрома гарантийный срок её использования в зависимости от диаметра составляет от 800 до 4 000 часов в непрерывном режиме эксплуатации. Величина этого показателя растёт по мере увеличения диаметра проволоки.

Описание

Под данным термином понимают тип твердых высокоуглеродистых сплавов, состоящих преимущественно из кобальта в легированной матрице. Они принадлежат к группе цветных литых сплавов, однако ранее существовал черный вариант стеллита с содержанием железа до 20% объема.

Стеллит отличается значительно лучшими эксплуатационными параметрами от быстрорежущей стали. Данные сплавы, твердые в исходном виде, не требуют закалки и термической обработки. Несмотря на изменения структуры при высоких температурах сохраняют режущую способность примерно до 800 °C. Ввиду отсутствия влияния отпуска, характерного для стали, структура стеллита стабильна. В ней присутствуют включения карбида в виде мелких игл, количество которых возрастает при быстром охлаждении. Этим объясняется сокращение хрупкости сплавов при отливке тонких профилей. Они устойчивы к влиянию кислот и прочих химически активных веществ. Удельный вес составляет 9 кг/дм3. К недостаткам относят ограниченную возможность обработки путем шлифовки и отливки и хрупкость после отливки.

Кроме того, было создано множество прочих аналогов. Среди них – горан, акрит, мироманнит, цельзит, смена.

Физические свойства

Алюминий не имеет каких-либо уникальных физических свойств, но их сочетание делает металл одним из самых широко востребованных.

Твердость чистого алюминия по шкале Мооса равняется трем, что значительно ниже, чем у большинства металлов. Данный факт является практически единственным препятствием для использования чистого металла.

Если внимательно рассмотреть таблицу физических свойств алюминия, то можно выделить такие качества, как:

  • Малую плотность (2.7 г/см3);
  • Высокую пластичность;
  • Низкое удельное электрическое сопротивление (0,027 Ом·мм2/м);
  • Высокую теплопроводность (203.5 Вт/(м·К));
  • Высокую светоотражательная способность;
  • Низкую температуру плавления (660°С).

Такие физические свойства алюминия, как высокая пластичность, низкая температура плавления, отличные литейные качества, позволяют использовать данный металл в чистом виде и в составе сплавов на его основе для производства изделий любой самой сложной конфигурации.

Вместе с этим, это один из немногих металлов, хрупкость которого не возрастает при охлаждении до сверхнизких температур. Данное свойство определило одну из областей применения в конструктивных элементах криогенной техники и аппаратуры.

Детали из алюминия

Существенно более высокую прочность, сравнимую с прочностью некоторых сортов стали, имеют сплавы на основе алюминия. Наибольшее распространение получили сплавы с добавлением магния, меди и марганца – дюралюминиевые сплавы и с добавлением кремния – силумины. Первая группа отличается высокой прочностью, а последняя одними из самых лучших литейных качеств.

Невысокая температура плавления снижает затраты на производство и себестоимость технологических процессов при производстве конструкционных материалов на основе алюминия и его сплавов.

Для изготовления зеркал используется такое качество, как высокий коэффициент отражения, сравнимый с показателем серебра, легкость и технологичность вакуумного напыления алюминиевых пленок на различные несущие поверхности (пластики, металл, стекло).

https://youtube.com/watch?v=IMf_Q5np_BM

При плавке алюминия и выполнения литья особое внимание обращается на способность расплава поглощать водород. Не оказывая действий на химическом уровне, водород способствует уменьшению плотности и прочности за счет образования микроскопических пор при застывании расплава

Благодаря низкой плотности и малому электрическому сопротивлению (ненамного выше меди), провода из чистого алюминия находят преимущественное применение при передаче электроэнергии в линиях электропередач, всего диапазона токов и напряжений в электротехнике, как альтернатива медным силовым и обмоточным проводам. Сопротивление меди несколько меньше, поэтому провода из алюминия необходимо использовать большего сечения, но итоговая масса изделия и его себестоимость оказываются в несколько раз меньше. Ограничением служит только несколько меньшая прочность алюминия и высокая сопротивляемость пайке из-за пленки окислов на поверхности. Большую роль играет наличие сильного электрохимического потенциала при контакте с таким металлом, как медь. В результате, в месте механического контакта меди и алюминия образуется прочная пленка окисла, имеющего высокое электрическое сопротивление. Это явление приводит к нагреву места соединения вплоть до расплавления проводников. Существуют жесткие ограничения и рекомендации по применению алюминия в электротехнике.

Алюминий в строительстве

Высокая пластичность позволяет изготавливать тонкую фольгу, которая используется в производстве конденсаторов высокой емкости.

Легкость алюминия и его сплавов стали основополагающими при использовании в авиакосмической отрасли при изготовлении большинства элементов конструкции летательных аппаратов: от несущих конструкций, до элементов обшивки, корпусов приборов и оборудования.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий