Цементит

Описание

Концентрация углерода в цементите — 6,67% по массе — предельная для железоуглеродистых сплавов. Цементит — метастабильная фаза; образование стабильной фазы — графита во многих случаях затруднено. Цементит имеет орторомбическую кристаллическую решётку, очень твёрд и хрупок, слабо магнитен до 210 °C.

В зависимости от условий кристаллизации и последующей обработки цементит может иметь различную форму — равноосных зёрен, сетки по границам зёрен, пластин, а также видманштеттову структуру.

Цементит в разных количествах, в зависимости от концентрации, присутствует в железоуглеродистых сплавах уже при малых содержаниях углерода. Формируется в процессе кристаллизации из расплава чугуна. В сталях выделяется при охлаждении аустенита или при нагреве мартенсита. Цементит является фазовой и структурной составляющей железоуглеродистых сплавов, составной частью ледебурита, перлита, сорбита и троостита. Цементит — представитель так называемых фаз внедрения, соединений переходных металлов с лёгкими металлоидами. В фазах внедрения велики доля как ковалентной, так и металлической связи.

Твёрдость по Бринеллю больше 800 кг/мм2. Первичный цементит кристаллизуется из жидкого сплава Вторичный цементит — из аустенита Третичный цементит — из феррита

Химические соединения

Основные структуры, составляющие железоуглеродистых сплавов:

Феррит представляет собой твердый раствор углерода в α-Fe. При температуре 723°C максимальное содержание углерода составляет 0.02%.It не вытравит если никакие примеси.

Цементит-соединение, содержащее углерод железа fe3c-6,67% карбида углерода. Эвтектика является неотъемлемой частью смеси и самостоятельным структурным компонентом. За счет замещения атомами других металлов может образовываться твердый раствор, который неустойчив и разлагается при термической обработке. Цементит очень твердых(НВ 800) и хрупок.

Аустенит представляет собой твердый раствор углерода в γ-Fe. Атомы углерода вводятся в кристаллическую решетку, и степень насыщения может варьироваться в зависимости от температуры и impurities. It устойчив только при высоких температурах, а стабилен даже при нормальных низких температурах-примеси Mn, Cr. Аустенитная твердость HB 170… 220.

Микроструктура:

  • а-гиперэвтектоидная сталь-феррит (светлая область) и перлит (темная область) с увеличением 500X, б-эвтектоидная сталь-перлит (1000′), в-эвтектоидная сталь-зацепляющийся перлит и цементит (200’).)
  • Растворимость углерода в феррите снижается с 727% при 0,02°с до 0,005% при комнатной температуре.

Химические свойства

Как химическое соединение цементит обладает своими физическими, химическими и механическими характеристиками. Он имеет серый кристаллический вид на изломе, относительно твёрдый с высокой термической устойчивостью. Основные химические свойства цементита выражаются в следующих показателях:

  • химическая формула Fe3C;
  • разложение структуры происходит при температуре более 1650°С;
  • подвержен воздействию различных кислот (особенно высоко концентрированных);
  • быстро вступает в реакцию с кислородом.

На основании существующих химических свойств сформированы физические и механические свойства. К основным физическим свойствам относятся:

  • температура плавления равняется 1700 °С;
  • молекулярная масса составляет 179,55 а.е.м.;
  • плотность цементита равна 7,7 г/см3 при температуре равной 20 °С.

К основным механическим свойствам относятся:

  • твердость;
  • стойкость к ударным воздействиям (хрупкость);
  • сопротивление на излом;
  • пластичность.

Твёрдость этого соединения достигает больших значений и равна НВ 8000 МПа или HRC 70. Однако он обладает достаточной хрупкостью и низкой пластичностью.

Обладая перечисленными свойствами, цементит активно используется при производстве литых деталей различного назначения. Образование различного вида цементита и его соединений с другими формами приводит к изменению характеристик получаемой стали или чугуна, следовательно, к улучшению или снижению отдельных потребительских свойств.

Например, для получения белого чугуна и придания ему высокой прочности и пластичности стараются перевести цементит в графит. Это достигается при проведении операции отжига. При возрастании температуры он распадается на две составляющие: феррит и графит.

В зависимости от требуемых свойств в чугуне стараются сохранить требуемое количество цементита. Особенно это касается так называемого свободной фракции этого соединения. Для снижения его концентрации применяют различные способы химической и термической обработки. Для решения этой задачи применяют раствор азотной кислоты в чистом спирте. Структурно свободный цементит выпадает в осадок в результате кипячения чугунной болванки в этом растворе. Кроме этого применяют три вида обработки: отжиг, нормализацию и закалку.

Техническое железо содержит третичный цементит в сочетании с ферритом. Он проявляется по границе феррита при содержании углерода от 0,01% до 0,025%. Для повышения качества стали стараются снизить содержание свободного цементита. Особенно его концентрация наблюдается в мягких марках стали. Большое влияние на качество штамповки оказывает содержание этой смеси и перлита в единице объёма. Излишнее присутствие третичного цементита, особенно в форме продолжительной цепочки или сетки приводит к образованию разрывов во время штамповки. Поэтому для получения хорошей ковочной стали стараются снизить количество третичного цементита. Структура таких образований не должна превышать второго балла по установленной шкале. Получаемая твёрдость не должна превышать HB 50 единиц.

Химические свойства

Как химическое соединение цементит обладает своими физическими, химическими и механическими характеристиками. Он имеет серый кристаллический вид на изломе, относительно твёрдый с высокой термической устойчивостью. Основные химические свойства цементита выражаются в следующих показателях:

  • химическая формула Fe3C;
  • разложение структуры происходит при температуре более 1650°С;
  • подвержен воздействию различных кислот (особенно высоко концентрированных);
  • быстро вступает в реакцию с кислородом.

На основании существующих химических свойств сформированы физические и механические свойства. К основным физическим свойствам относятся:

  • температура плавления равняется 1700 °С;
  • молекулярная масса составляет 179,55 а.е.м.;
  • плотность цементита равна 7,7 г/см3 при температуре равной 20 °С.

К основным механическим свойствам относятся:

  • твердость;
  • стойкость к ударным воздействиям (хрупкость);
  • сопротивление на излом;
  • пластичность.

Твёрдость этого соединения достигает больших значений и равна НВ 8000 МПа или HRC 70. Однако он обладает достаточной хрупкостью и низкой пластичностью.

Обладая перечисленными свойствами, цементит активно используется при производстве литых деталей различного назначения. Образование различного вида цементита и его соединений с другими формами приводит к изменению характеристик получаемой стали или чугуна, следовательно, к улучшению или снижению отдельных потребительских свойств.

Например, для получения белого чугуна и придания ему высокой прочности и пластичности стараются перевести цементит в графит. Это достигается при проведении операции отжига. При возрастании температуры он распадается на две составляющие: феррит и графит.

В зависимости от требуемых свойств в чугуне стараются сохранить требуемое количество цементита. Особенно это касается так называемого свободной фракции этого соединения. Для снижения его концентрации применяют различные способы химической и термической обработки. Для решения этой задачи применяют раствор азотной кислоты в чистом спирте. Структурно свободный цементит выпадает в осадок в результате кипячения чугунной болванки в этом растворе. Кроме этого применяют три вида обработки: отжиг, нормализацию и закалку.

Техническое железо содержит третичный цементит в сочетании с ферритом. Он проявляется по границе феррита при содержании углерода от 0,01% до 0,025%. Для повышения качества стали стараются снизить содержание свободного цементита. Особенно его концентрация наблюдается в мягких марках стали. Большое влияние на качество штамповки оказывает содержание этой смеси и перлита в единице объёма. Излишнее присутствие третичного цементита, особенно в форме продолжительной цепочки или сетки приводит к образованию разрывов во время штамповки. Поэтому для получения хорошей ковочной стали стараются снизить количество третичного цементита. Структура таких образований не должна превышать второго балла по установленной шкале. Получаемая твёрдость не должна превышать HB 50 единиц.

Степень измельчения/помол

От данного свойства зависит, через какое время затвердеет цемент, и какая прочность будет у этого затвердевшего материала. Лучше выбирать мелкий помол, поскольку именно у такого материала быстро происходит реакция взаимодействия между цементом и водой, увеличивается прочность. Но наиболее мелкая степень измельчения имеет противоположный результат – у цемента увеличивается потребность в воде, происходят осадочные деформации. Все это влечет за собой понижение прочности цемента. Чтобы не прогадать, строители рекомендуют, чтобы в составе цемента были как крупные частицы – 80 мкм, так и мелкие – порядка 40 мкм. Чтобы сэкономить, можно в обычный крупного помола цемент добавить сверхтонкий. Достаточно, чтобы последний составлял 15-25%.

Диаграмма состояния

ЛинияABCD является ликвидусом системы, линияAHJECF — солидусом.

Так как железо, кроме того, что образует с углеродом химическое соединение Fe3C, имеет две аллотропические формы α и γ, то в системе существуют следующие фазы:

жидкость (жидкий раствор углерода в железе), существующая выше линии ликвидус, обозначаемая везде буквой L;

цементит Fe3C — линия DFKL, обозначаемая в дальнейшем химической формулой или буквой Ц;

феррит — структурная составляющая, представляющая собой α-железо, которое в незначительном количестве растворяет углерод; обозначается буквой Ф, α или α-Fe. Область феррита в системе железо — углерод расположена левее линии GPQ и AHN;

аустенит — структура, представляющая собой твердый раствор углерода в γ-железе. Область аустенита на диаграмме — NJESG. Обозначается аустенит А, или γ-Fe.

Три горизонтальные линии на диаграмме (HJB,ECF и PSK) указывают на протекание трех нонвариантных реакций.

При 1499 °С (линия HJB) протекает перитектическая реакция:

В результате перитектической реакции образуется аустенит. Реакция эта наблюдается только у сплавов, содержащих углерода от 0,1 до 0,5%. При 1147 °С (горизонтальECF) протекает эвтектическая реакция:

В результате этой реакции образуется эвтектическая смесь. Эвтектическая смесь аустенита и цементита называетсяледебуритом (немецкий ученый Ледебур)

Реакция эта происходит у всех сплавов системы, содержащих углерода более 2,14 %.

При 727 °С (горизонталь PSK) протекает эвтектоидная реакция

Продуктом превращения является эктектоидная смесь. Эвтектоидная смесь феррита и цементита называется перлитом,имеет вид перламутра, почему эта структура и получила такое название.

У всех сплавов, содержащих свыше 0,02 % углерода, т. е. практически у всех промышленных железоуглеродистых сплавов, происходит перлитное (эвтектоидное) превращение.

Различают три группы сталей: эвтектоидные, содержащие около 0,8%С, структура которых состоит только из перлита; доэвтектоидные, содержащие меньше 0,8 % С. структура котопых состоит из феррита и перлита, и заэвтектоидные, содержащие от 0,8 до 2,14 %С, структура которых состоит из перлита и цементита.

Фазы в системе «железо-углерод»

В системе железо – углерод существуют следующие фазы: жидкая фаза, феррит, аустенит, цементит, графит.

Жидкая фаза

Жидкая фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях с образованием однородной жидкой фазы.

Феррит

Феррит (Ф, α)- твердый раствор внедрения углерода в α-железе (от латинского слова ferrum – железо). Различают низкотемпературный феррит с предельной растворимостью углерода 0,02 % при температуре 727° С (точка P) и высокотемпературный δ-феррит (в интервале температур 1392…1539° С) с предельной растворимостью углерода 0,1 % при температуре 1499° С (точка J).

Свойства феррита близки к свойствам железа. Он мягок (твердость – 80 — 130 НВ, временное сопротивление – σв=300 МПа) и пластичен (относительное удлинение — δ=50 %), магнитен до 768° С.

Под микроскопом феррит выглядит как светлые полиэдрические зерна. В сталях может существовать в виде сетки (разной толщины, в зависимости от содержания углерода), зерен (малоуглеродистые стали), пластин или игл (видманштетт).

Аустенит в сталях

Аустенит (А, γ) – твердый раствор внедрения углерода в γ–железо (по имени английского ученого Р. Аустена). Углерод занимает место в центре гранецентрированной кубической ячейки. Предельная растворимость углерода в γ -железе 2,14 % при температуре 1147° С (точка Е). Аустенит имеет твердость 180 НВ, пластичен (относительное удлинение – δ=40…50 %), парамагнитен. При растворении в аустените других элементов могут изменяться свойства и температурные границы существования. Под микроскопом выглядит как светлые полиэдрические зерна с двойниками.

Цементит – формы существования

В железоуглеродистых сплавах присутствуют фазы: цементит первичный, цементит вторичный, цементит третичный. Химические и физические свойства этих фаз одинаковы. Влияние на механические свойства сплавов оказывает различие в размерах, количестве и расположении этих выделений. Цементит первичный выделяется из жидкой фазы в виде крупных пластинчатых кристаллов. Цементит вторичный выделяется из аустенита и располагается в виде сетки вокруг зерен аустенита (при охлаждении – вокруг зерен перлита). Цементит третичный выделяется из феррита и в виде мелких включений располагается у границ ферритных зерен.

Поскольку углерод в сплавах с железом встречается в виде цементита и графита, существуют две диаграммы состояния, описывающие условия равновесия фаз в системах железо — цементит и железо — графит. Первая диаграмма (Fе — Fе3С) называется цементитной (метастабильная), вторая (Fе — С) — графитной (стабильная). Оба варианта диаграммы приводятся вместе в одной системе координат: температура — содержание углерода. Диаграмма состояния системы железо — углерод построена по результатам многочисленных исследований, проведенных учеными ряда стран. Особое место среди них занимают работы Д.К. Чернова

Он открыл существование критических точек в стали, определил их зависимость от содержания углерода, заложил основы для построения диаграммы состояния железоуглеродистых сплавов в ее нижней, наиболее важной части

Буквенное обозначение узловых точек в диаграмме является общепринятым как в России, так и за рубежом.

Диаграмма состояния железо-углерод

Имеющиеся во всех областях диаграммы фазы видны на рисунке. Значение всех линий указано в таблице.

Ликвидус по всей диаграмме проходит по линиям АВ, ВС, СD; солидус — по линиям АН, НJ, JЕ, ЕСF. Сплавы железа с углеродом обычно делят на стали и чугуны. Условной границей для такого деления является 2,14 % С (точка E). Сплавы, содержащие углерода менее 2,14 %, относятся к сталям, более 2,14 % — к чугунам.

Температуры, при которых происходят фазовые и структурные превращения в сплавах системы железо – цементит, т.е. критические точки, имеют условные обозначения. Обозначаются буквой А. В зависимости от того, при нагреве или при охлаждении определяется критическая точка, к букве А добавляется индекс с (от слова chauffage – нагрев) при нагреве и индекс r (от слова refroidissement – охлаждение) при охлаждении с оставлением цифры, характеризующей данное превращение.

Таким образом, например, нагрев доэвтектоидной стали выше соответствующей точки на линии GS обозначается как нагрев выше точки АС3. При охлаждении же этой стали первое превращение должно быть обозначено как Аr3, второе (на линии РSК) — как Аr1.

Первичный, вторичный и третичный цементит

По способу и области образования он подразделяется на три основных вида:

  • первичный;
  • вторичный;
  • третичный.

Образование первичного цементита наблюдается в процессе кристаллизации заэвтектического чугуна. В этот момент образуются кристаллы вытянутой формы. Они образовывают первичный карбид. Первичное образование может проявляться в доэвтектическом чугуне в составе ледебурита в процессе кристаллизации расплава. Проведенные исследования показали, что такая смесь железа и углерода присутствует не только в белом чугуне. Она может проявиться в сером чугуне после завершения операции так называемой графитизации.

Процесс образования вторичного вида наблюдается в основном при охлаждении аустенита. Это явление наблюдается при снижении температуры ниже 1147 °С. При такой температуре происходит снижение концентрации углерода в аустените. Освободившиеся атомы углерода вступают в новые связи, и образуется цементит, который называется вторичным. При дальнейшем снижении температуры до эвтектоидной продолжается его формирование. Даже при комнатной температуре он встречается в составе перлита. В этих условиях его можно обнаружить в заэвтектоидной стали. Он образовывается на границах зернистой структуры.

Процесс охлаждения феррита формирует так называемый третичный цементит. Данный вид достаточно сложно зафиксировать, и проводит дальнейшее наблюдение за его образованием. Эта проблема связана с появлением третичного цементита в небольших количествах. Исследования образования данной фракции показали, что он приобретает несколько форм: пластинки, прожилки или в форме иголок. Все эти элементы формируются в зёрнах феррита. Третичное образование достаточно сложно получить, потому что при повышении процентного содержания углерода третичный цементит соединяется с перлитом. При повышении скорости охлаждения содержание углерода сохраняется в растворе металла и образование третичной фракции прекращается. Явным признаком образования является результат постепенного старения феррита. В этом случае в содержании феррита изменяется концентрация углерода.

Из приведенного выше описания можно сделать следующие выводы:

  • первичная фракция образовывается в результате кристаллизации расплава;
  • вторичный – в результате последовательного охлаждения аустенита;
  • третичный – после охлаждения феррита.

В различных марках стали и чугуна цементит первичный обладает высокой вариативностью формы. Это могут быть пластины правильной формы полоски или образования в форме иголок. При проведении операции отжига он может принимать форму округлых образований. Как  результат трансформируется в зернистый перлит.

Чистая форма

Цементит меняется с ферромагнитный к парамагнитный на своем Температура Кюри примерно 480 К.

Зависимость мольного объема цементита от давления при комнатной температуре.

Карбид природного железа (содержащий незначительное количество никеля и кобальта) встречается в железные метеориты и называется когенит в честь немецкого минералога Эмиль Коэн, который первым описал это. Поскольку углерод является одним из возможных второстепенных компонентов легких сплавов металлических ядер планет, свойства цементита (Fe3C) как простой заменитель когенита изучаются экспериментально. На рисунке показано поведение при сжатии при комнатной температуре.

Общие сведения о сплаве

Отличительным свойством стали является наличие в структуре специальных легированных примесей и углерода. Собственно, по содержанию углерода и определяют доэвтектоидный сплав

Здесь важно различать и классическую эвтектоидную, а также ледебуритную стали, которые имеют много общего с описываемой разновидностью технического железа. Если рассматривать структурный класс стали, то доэвтектоидный сплав будет относиться к эвтектоидам, но содержащим в составе легированные ферриты и перлиты. Принципиальным отличием от заэвтектоиднов является уровень углерода, находящийся ниже 0,8%

Превышение этого показателя позволяет относить сталь к полноценным эвтектоидам. В некотором роде противоположностью доэвтектоида является заэвтектоидная сталь, в которой помимо перлита также содержатся вторичные примеси карбидов. Таким образом, существует два основных фактора, позволяющих выделять доэвтектоидные сплавы из общей группы эвтектоидов. Во-первых, это относительно небольшое содержание углерода, а во-вторых, это особый набор примесей, основу которых составляет феррит

Принципиальным отличием от заэвтектоиднов является уровень углерода, находящийся ниже 0,8%. Превышение этого показателя позволяет относить сталь к полноценным эвтектоидам. В некотором роде противоположностью доэвтектоида является заэвтектоидная сталь, в которой помимо перлита также содержатся вторичные примеси карбидов. Таким образом, существует два основных фактора, позволяющих выделять доэвтектоидные сплавы из общей группы эвтектоидов. Во-первых, это относительно небольшое содержание углерода, а во-вторых, это особый набор примесей, основу которых составляет феррит.

Металлургия

Орторомбический Fe 3 C. Атомы железа голубые.

Фазовая диаграмма железо-углерод

В системе железо-углерод (например, углеродистые стали и чугуны ) он является обычным компонентом, поскольку феррит может содержать не более 0,02 мас.% Несвязанного углерода. Следовательно, в углеродистых сталях и чугунах, которые медленно охлаждаются, часть углерода находится в форме цементита. Цементит образуется непосредственно из расплава в случае белого чугуна . В углеродистой стали цементит выделяется из аустенита, когда аустенит превращается в феррит при медленном охлаждении, или из мартенсита во время отпуска . Тесная смесь с ферритом, другим продуктом аустенита, образует пластинчатую структуру, называемую перлитом .

Хотя цементит термодинамически нестабилен и в конечном итоге превращается в аустенит (низкий уровень углерода) и графит (высокий уровень углерода) при более высоких температурах, он не разлагается при нагревании при температурах ниже температуры (723 ° C) на метастабильном железоуглеродистом состоянии. фазовая диаграмма.

Материалы для производства силикатных бетонов

Основным вяжущим компонентом в силикатном бетоне выступает тонкомолотая известь кипелка или известь-пушонка, которая в сочетании с заполнителями и составляет основное сырье для производства силикатных бетонов. После добавления воды и последующей тепловой обработки в автоклавах, силикатобетонная смесь превращаться в прочное бетонное изделие.

Известь, применяемая для производства силикатных смесей должна отвечать следующим свойствам:

  • средняя скорость гидратации;
  • умеренный экзотермический эффект;
  • вся фракция должна быть одинаково обожженной;
  • MgO менее 5%;
  • время гашения извести — 20 мин не более.

Недожог известковой массы приводит к повышенному расходу материала. Пережог снижает время гидратации извести, что приводит к вспучиванию, появлению трещин на поверхности изделий и др.

Известь

Известь, применяемая для производства силикатобетона, обычно используется в виде тонкомолотых известковых смесей следующего состава:

  • известково-кремнеземистые — соединение извести и кварцевого песка;
  • известково-шлаковые (известь и доменный шлак);
  • известково-зольные — топливная сланцевая или угольная зола и известь;
  • известково-керамзитовые и другие подобные компоненты, получаемые из отходов промышленного производства пористых заполнителей;
  • известково-белитовые вяжущие, получаемые при низкотемпературном обжиге известково-кремнеземистой сухой смеси и кварцевого песка.

В качестве кремнеземистых заполнителей используют следующие материалы:

  • кварцевый молотый песок;
  • металлургические (доменные) шлаки;
  • зола ТЭЦ.

Наиболее часто в качестве заполнителей выступают кварцевые пески средней и мелкой фракции, которые по своему составу должны выглядеть следующим образом:

  • 80% и более кремнезема;
  • менее 10% глинистых включений;
  • 0,5% и меньше примесей слюды.

Крупные включения глины в структуре кварцевого песка снижают морозостойкость и прочность силикатного бетона.

Кварцевый песок

Тонкомолотый кварцевый песок оказывает значительное влияние на формирование высоких эксплуатационных свойств силикатных бетонов. Так, с повышением дисперсности частиц песка увеличивается морозостойкость, прочность и другие характеристики силикатных материалов.

При выборе составляющих для изготовления силикатного бетона необходимо знать следующее:

  1. Расход вяжущего увеличивается пропорционально увеличению прочности бетона.
  2. Снижение расхода вяжущих в составе силикатной смеси наблюдается при повышении дисперсности мелкого кварцевого песка, и увеличивается при повышении формовочной влажности силикатобетонного раствора.
  3. Дисперсность молотого кварцевого песка должна быть в 2,5 раза ниже дисперсности молотой извести.

Отрывок, характеризующий Цементит

Люди русского войска были так измучены этим непрерывным движением по сорок верст в сутки, что не могли двигаться быстрее. Чтобы понять степень истощения русской армии, надо только ясно понять значение того факта, что, потеряв ранеными и убитыми во все время движения от Тарутина не более пяти тысяч человек, не потеряв сотни людей пленными, армия русская, вышедшая из Тарутина в числе ста тысяч, пришла к Красному в числе пятидесяти тысяч. Быстрое движение русских за французами действовало на русскую армию точно так же разрушительно, как и бегство французов. Разница была только в том, что русская армия двигалась произвольно, без угрозы погибели, которая висела над французской армией, и в том, что отсталые больные у французов оставались в руках врага, отсталые русские оставались у себя дома. Главная причина уменьшения армии Наполеона была быстрота движения, и несомненным доказательством тому служит соответственное уменьшение русских войск. Вся деятельность Кутузова, как это было под Тарутиным и под Вязьмой, была направлена только к тому, чтобы, – насколько то было в его власти, – не останавливать этого гибельного для французов движения (как хотели в Петербурге и в армии русские генералы), а содействовать ему и облегчить движение своих войск. Но, кроме того, со времени выказавшихся в войсках утомления и огромной убыли, происходивших от быстроты движения, еще другая причина представлялась Кутузову для замедления движения войск и для выжидания. Цель русских войск была – следование за французами. Путь французов был неизвестен, и потому, чем ближе следовали наши войска по пятам французов, тем больше они проходили расстояния. Только следуя в некотором расстоянии, можно было по кратчайшему пути перерезывать зигзаги, которые делали французы. Все искусные маневры, которые предлагали генералы, выражались в передвижениях войск, в увеличении переходов, а единственно разумная цель состояла в том, чтобы уменьшить эти переходы. И к этой цели во всю кампанию, от Москвы до Вильны, была направлена деятельность Кутузова – не случайно, не временно, но так последовательно, что он ни разу не изменил ей. Кутузов знал не умом или наукой, а всем русским существом своим знал и чувствовал то, что чувствовал каждый русский солдат, что французы побеждены, что враги бегут и надо выпроводить их; но вместе с тем он чувствовал, заодно с солдатами, всю тяжесть этого, неслыханного по быстроте и времени года, похода. Но генералам, в особенности не русским, желавшим отличиться, удивить кого то, забрать в плен для чего то какого нибудь герцога или короля, – генералам этим казалось теперь, когда всякое сражение было и гадко и бессмысленно, им казалось, что теперь то самое время давать сражения и побеждать кого то. Кутузов только пожимал плечами, когда ему один за другим представляли проекты маневров с теми дурно обутыми, без полушубков, полуголодными солдатами, которые в один месяц, без сражений, растаяли до половины и с которыми, при наилучших условиях продолжающегося бегства, надо было пройти до границы пространство больше того, которое было пройдено.

ЦЕМЕНТИТ

ЦЕМЕНТИТ

– химическое соединение (карбид железа) в железоуглеродистых сплавах, и соответствующее максимальному содержанию углерода. Химическая формула цементита Fe3C, концентрация углерода – 6,67% (по массе) (по массе). Также по теме: УГЛЕРОД

Как следует из диаграммы состояния железо – углерод, как фазовая составляющая цементит есть в железоуглеродистых сплавах уже при очень малых содержаниях углерода (сотые доли процента) и его количество возрастает по мере увеличения содержания углерода. При этом цементит входит в структурную составляющую перлит (смесь феррита и цементита), существующую в стали, наряду с ферритом. По мере увеличения содержания углерода доля перлита в структуре возрастает и, соответственно, возрастает количество цементита. При содержании углерода 0,8% (эвтектоидная сталь) структура целиком состоит из перлита. При дальнейшем увеличении содержания углерода в стали, кроме перлита появляется избыточный цементит. Вплоть до содержания углерода 1,7% железоуглеродистые сплавы называются сталями, при более высоких концентрациях до максимальной 6,67% – чугунами.

В процессе термической обработки в сталях цементит образуется при охлаждении и распаде твердого раствора (аустенита), в чугунах – непосредственно при охлаждении из жидкого состояния. Соответствующая структурная составляющая из цементита и аустенита, называется ледебурит с общим содержанием углерода в 4,3%. При дальнейшем увеличении доли углерода при охлаждении из жидкости при охлаждении выделяются цементит (первичный) и ледебурит. В чугунах, содержащих аустенит, при охлаждении происходит перлитное превращение, также приводящее к выделению цементита.

Также по теме:

ХИМИЯ

Цементит имеет высокую твердость и хрупкость, поэтому железоуглеродистые сплавы, содержащие много цементита, не поддаются пластической деформации.

Из-за различных механизмов образования цементита его микроструктура может очень сильно отличаться для сплавов с различным содержанием углерода после различных термических обработок и размеры кристаллов могут меняться от сотых долей до нескольких мм.

Кристаллическая структура цементита, определенная рентгеноструктурным анализом, – ромбическая. Ее элементарная ячейка, т.е. минимальная конфигурация атомов, параллельным переносом которой можно заполнить пространство, представляет собой прямоугольный параллелепипед с различными размерами по всем трем осям и определенным расположением атомов железа и углерода в ячейке.

В легированных сталях могут возникать соединения с химической формулой, аналогичной формуле цементита, но с частью атомов железа, замещенных атомами легирующего элемента. Такие соединения носят название специальных карбидов.

Лев Миркин

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий