Орбитальное действие с взрывной пилой

Физическое состояние

Американская бомба BLU-82/B содержит 5700 кг аммонала. Это одна из самых мощных неядерных бомб.

Эта классификация весьма обширна. Она включает в себя не только три состояния вещества (газ, жидкость, твердое тело), но и всевозможные дисперсные системы (гели, суспензии, эмульсии). Типичный представитель жидких взрывчатых веществ — нитроглицерин — при растворении в нем нитроцеллюлозы превращается в гель, известный как «гремучий студень», а при смешивании этого геля с твердым абсорбентом образуется твердый динамит.

Так называемые «гремучие газы», то есть смеси водорода с кислородом или хлором, практически не используются ни в промышленности, ни в военном деле. Они крайне нестабильны, обладают исключительно высокой чувствительностью и не позволяют производить точное взрывное воздействие. Существуют, однако, так называемые боеприпасы объемного взрыва, к которым военные проявляют большой интерес. Они не попадают в категорию газообразных взрывчатых веществ, но достаточно близки к ней.

Большинство современных промышленных составов — водные суспензии композитов, состоящих из аммиачной селитры и горючих компонентов. Такие составы очень удобны для транспортировки к месту проведения взрывных работ и заливки в шпуры. А широко распространенные составы Шпренгеля хранятся раздельно и готовятся непосредственно на месте применения в необходимом количестве.

Взрывчатые вещества военного применения, как правило, твердые. Всемирно известный тринитротолуол плавится без разложения и потому позволяет создавать монолитные заряды. А не менее известные гексоген и ТЭН при плавлении разлагаются (иногда с взрывом), поэтому заряды из таких взрывчатых веществ формируются прессованием кристаллической массы во влажном состоянии с последующим высушиванием. Аммониты и аммоналы, используемые при снаряжении боеприпасов, обычно гранулируют для облегчения засыпки.

Физическая природа взрывного превращения

Взрывное превращение, как правило, носит кратковременный характер, протекает при температурах от 2500 до 4500 K и сопровождается выделением огромного количества высокотемпературных газов и тепла. Взрывная реакция не требует наличия в окружающем воздухе окислителя (в качестве которого обычно выступает кислород), поскольку он содержится в химически связанном виде в ингредиентах взрывчатки.

Стоит отметить, что суммарное количество энергии, которая высвобождается при взрыве, относительно невелико и обычно в пять или шесть раз меньше теплотворной способности нефтепродуктов аналогичной массы. Тем не менее, несмотря на скромную энергетическую отдачу, огромная скорость реакции, которая по закону Аррениуса является следствием большой температуры, обеспечивает достижение высоких значений мощности.

Высвобождение большого количества газообразных продуктов сгорания считается другим признаком химической реакции в виде взрыва. При этом, стремительная трансформация взрывчатого вещества в высокотемпературные газы сопровождается скачкообразным изменением давления (до 10—30 ГПа), которое носит название ударной волны. Распространение этой волны способствует передаче энергии от одного слоя взрывчатки к другому и сопровождается возбуждением в новых слоях аналогичной химической реакции. Этот процесс получил название детонации, а инициирующая его ударная волна стала называться детонационной волной.

Существует ряд веществ, способных к нехимическому взрыву (например, ядерные и термоядерные материалы, антивещество). Также существуют методы воздействия на различные вещества, приводящие к взрыву (например, лазером или электрической дугой). Обычно такие вещества не называют «взрывчатыми».

Повреждения запалами, гранатами, минами, снарядами

Запал (взрыватель) представляет собой металлическую трубку диамет­ром до 1 см, длиной 8—12 см, содержащую ВВ и взрывной механизм. Удар, нагревание и разборка запала могут причинить взрыв и травму. Плотно зажатый в руке взрыватель в момент взрыва отрывает пальцы, образуется обширная рваная рана с внедрением порошинок и окопчением. По мере удаления от места взрыва повреждений становится меньше и они неглу­боки. Внедрение порошинок наблюдается на расстоянии до 30 см.

Взрыв запала часто причиняет ранения глаз.

Для ранения гранатой на поражение характерны множественные раны с развороченными стенками и кровоподтечностью окружающих тканей, покрытых копотью.

Повреждения гранатой могут возникнуть в момент метания для пораже­ния цели или в руках при неосторожном обращении или неумелом пользо­вании и поразить как самого держащего, так и окружающих

Граната, взорвавшаяся в руках, отрывает кисти Оставшиеся части верх­них конечностей представлены обрывками кожи, мышц, сухожилий и по­врежденных костей. В других областях тела находятся множественные осколочные повреждения с серо-черными внедрениями ВВ Внедрение таких веществ наблюдается на расстоянии 45—50 см от места взрыва.

По расположению повреждений можно судить о позе, положении и действиях лица, получившего травму. Если человек лежит или сидит, то закрытые области тела обычно осколками не поражаются.

От взрыва мин тело человека значительно разрушается, иногда на мно­жество частей, нередко отбрасываемых на значительное расстояние от места взрыва.

Копоть и порошинки из заряда мины располагаются в окружности и в стенках раны не только у лица, державшего мину, но и у лиц, находящихся на расстоянии до 6 м. Зерна взрывчатки в мине имеют большие размеры и своеобразную голубовато-синюю окраску.

Взрыв снаряда в руке часто вызывает отрыв кисти или части руки, опаление одежды и пушковых волос.

< ПредыдущаяСледующая >

Это интересно: Действия при угрозе цунами: причины и предвестники

Патогенез взрывной декоспрессии

Как следствие резкого снижения давления у лётчика и членов экипажа (пассажиров, десанта) может возникнуть баротравма легких и слухового аппарата, а также газовая эмболия.

баротравма органов

Баротравма слухового аппарата сопровождается разрывом барабанной перепонки, повреждением слуховых косточек, кровоизлиянием в ткани среднего и внутреннего уха и барабанную полость.

При баротравме легких отмечается жидкая кровь в дыхательных путях, острое вздутие легких, множественные очаговые кровоизлияния и разрывы легочной ткани. Наряду с крупноочаговым характером изменений в легочной ткани по ходу разветвлений бронхов наблюдаются также мелкие разрывы и кровоизлияния.

Баротравма полых органов — разрывы желудка и кишечника вследствие резкого увеличения объема содержащихся в них газов.

острая гипоксия

Острое кислородное голодание вследствие резкого снижения насыщения крови кислородом.

В первые секунды при взрывной декомпрессии наблюдается апноэ (отсутствие дыхательных движений), которое сменяется судорожными, неэффективными сокращениями дыхательной мускулатуры.

Через 20-30 секунд пребывания на высоте свыше 15 000 м артериальное давление резко падает и возникают коллапс и судороги; в этот момент из ноздрей обычно появляются слизистые, окрашенные кровью выделения. Продолжительность сохранения сознания при дыхании атмосферным воздухом у человека составляла: на высоте 14 000 м – от 15 до 33 секунд, на высоте 15 000 м – от 13 до 25 секунд и на высоте 16 000 м и более – от 9 до 22 секунд. Период сохранения ясного сознания в 2 раза короче для всех высот. На 4-5-й секунде у людей качество письменного текста начинает ухудшаться, и через 10 секунд почерк становится совершенно неразборчивым.

На высоте 16 000 м атмосферное давление равно 77 мм ртутного столба, парциальное давление кислорода в атмосферном воздухе будет равно 16 мм, а в альвеолярном воздухе – около 5-6 мм ртутного столба. Практически последнее будет приближаться к нулевой величине, так как сумма напряжения водяных паров (47 мм ртутного столба) и углекислоты (30 мм ртутного столба) равна величине барометрического давления (47+30 = 77).

газовая эмболия

Газовая эмболия возникает вследствие переходы в газообразное состояние растворенных в плазме крови газов (в первую очередь азота).

высотная тканевая эмфизема

Подкожная эмфизема (высотная тканевая эмфизема) — появляется на открытых участках тела при декоспрессии на высотах свыше 19 000 м. Причиной высотной тканевой эмфиземы является превращение жидкостей в пар когда напряжение (упругость) паров данной жидкости делается выше окружающего атмосферного давления. Атмосферное давление на высоте 19 000 м составляет 48 мм ртутного столба, а напряжение водяных паров в жидкостях организма при температуре 37° – 47 мм рт. ст.

Критической высотой для образования высотной эмфиземы считается 19 187 м, где давление атмосферы равно 47 мм ртутного столба. Поэтому, начиная с указанной высоты, создается угроза превращения жидкостей организма в пар. На более значительных высотах, где давление атмосферы ниже 45 мм ртутного столба, эта угроза становится совершенно реальной. Первые проявления такого «закипания» жидкостей организма в эксперименте можно наблюдать в области рта животного, когда в слюне начинают появляться пузырьки газа. Несколько позднее наступает общее раздувание животного, резко изменяющее его общий вид. Спуск животного до высоты 17 000 м приводит почти к мгновенному исчезновению всех явлений, и оно принимает свой нормальный вид. Очевидно, это «раздувание» тела животного и подкожная эмфизема обусловлены превращением в пар жидкости, прежде всего в подкожно-жировой клетчатке.

Подкожная эмфизема при декомпрессии до 30 мм. рт. ст. начинает развиваться через 30—40 секунд (Ddelmann, Hitehoock, 1948, и др.). Исследования газового пузыря при взрывной декомпрессии за 0,02 секунды до 30—25 мм рт. ст. показали наличие в нем водяного пара, углекислоты, азота, кислорода (Beman, Kampf, 1948; И.С. Балаховский, 1956; А.Г. Кузнецов, 1957; Е.А. Коваленко, Ю.А. Юрков, 1961, и др.).

Мы пойдем другим путем

Американцы снаряжали бомбы объемного взрыва окисью этилена, окисью пропилена, метаном, пропилнитратом и МАРР (смесью метилацетилена, пропадиена и пропана). Уже тогда было установлено, что при срабатывании бомбы, содержащей 10 галлонов (32−33 л) окиси этилена, образовывалось облако топливовоздушной смеси радиусом 7,5−8,5 м и высотой до 3 м. Через 125 мс облако подрывалось несколькими детонаторами. Образующаяся ударная волна имела по фронту избыточное давление 2,1 МПа. Для сравнения: чтобы создать такое давление на расстоянии 8 м от тротилового заряда, требуется около 200−250 кг тротила. На расстоянии 3−4 радиусов (22,5−34 м) давление в ударной волне быстро снижается и составляет уже около 100 кПа. Для разрушения ударной волной самолета требуется давление 70−90 кПа. Следовательно, такая бомба при взрыве способна в радиусе 30−40 м от места взрыва полностью вывести из строя самолет или вертолет на стоянке. Это было написано в специальной литературе, которую читали и в СССР, где тоже начали эксперименты в данной области.

Занимательная физика Ударная волна от традиционного ВВ, например тротила, имеет крутой фронт, быстрое угасание и последующую пологую волну разряжения.

Советские специалисты вначале пытались изобразить немецкий вариант с угольной пылью, но постепенно перешли на металлические порошки: алюминий, магний и их сплавы. В экспериментах с алюминием было обнаружено, что особого фугасного действия он не дает, зато дает замечательное зажигательное.

Отработали и различные окиси (окись этилена и пропилена), но они были токсичны и довольно опасны при хранении ввиду своей летучести: достаточно было небольшого подтравливания окиси, чтобы любая искра подняла арсенал на воздух. В итоге остановились на компромиссном варианте: смеси разных видов горючего (аналогов легких бензинов) и порошка алюминий-магниевого сплава в пропорции 10:1. Однако эксперименты показали, что при шикарных внешних эффектах поражающее действие объемно-детонирующих зарядов оставляло желать лучшего. Первой потерпела фиаско идея атмосферного взрыва для поражения самолетов — эффект оказался ничтожным, разве что «сбоили» турбины, которые тут же перезапускались заново, так как они даже не успевали остановиться. Против бронетехники это вообще не работало, там даже двигатель не глох. Эксперименты показали, что ОДАБ — это специализированные боеприпасы для поражения малостойких к ударной волне целей, прежде всего неукрепленных зданий, и живой силы. И все.

Объемно-детонирующий взрыв имеет более пологий фронт ударной волны с более растянутой по времени зоной высокого давления.

Однако маховик чудо-оружия был раскручен, и ОДАБам приписывались прямо-таки легендарные подвиги. Особо известен случай спуска такими бомбами снежных лавин в Афганистане. Посыпался дождь наград, в том числе самых высоких. В отчетах об операции была упомянута масса лавины (20 000 т) и написано, что взрыв объемно-детонирующего заряда эквивалентен ядерному заряду. Ни много ни мало. Хотя любой горноспасатель спускает точно такие же лавины простыми тротиловыми шашками.

Совсем уж экзотическое применение технологии собирались найти в сравнительно недавнее время, разработав в рамках программ по конверсии объемно-детонирующую систему на основе бензина для сноса хрущевок. Получалось быстро и дешево. Было только одно «но»: сносимые хрущевки располагались не в открытом поле, а в заселенных городах. А плиты при таком взрыве разлетались метров на сто.

Взрыв термобарического боеприпаса имеет сильно размытый фронт ударной волны, который не является первичным поражающим фактором.

Состав

Существуют два больших класса взрывчатых веществ — индивидуальные и композитные.

Индивидуальные представляют собой химические соединения, способные к внутримолекулярному окислению. При этом молекула вовсе не должна содержать в своем составе кислород — достаточно, чтобы одна часть молекулы передала электрон другой ее части с положительным тепловым выходом.

Энергетически молекулу такого взрывчатого вещества можно представить как шарик, лежащий в углублении на вершине горы. Он будет спокойно лежать до передачи ему некоторого сравнительно небольшого импульса, после чего скатится по склону горы, выделив при этом энергию, значительно превышающую затраченную.

Фунт тротила в заводской упаковке и аммоналовый заряд массой 20 килограмм.

К индивидуальным взрывчатым веществам относятся тринитротолуол (он же тротил, тол, ТНТ), гексоген, нитроглицерин, фульминат ртути (гремучая ртуть), азид свинца.

Композитные состоят из двух и более веществ, не связанных между собой химически. Иногда компоненты таких взрывчаток сами по себе не являются способными к детонации, а проявляют эти свойства при реакции между собой (обычно речь идет о смеси окислителя и восстановителя). Характерный пример такого двухсоставного композита — оксиликвит (пористое горючее вещество, пропитанное жидким кислородом).

Композиты могут состоять и из смеси индивидуальных взрывчатых веществ с добавками, регулирующими чувствительность, фугасность и бризантность. Такие добавки могут как ослаблять взрывные характеристики композитов (парафин, церезин, тальк, дифениламин), так и усиливать их (порошки различных химически активных металлов — алюминия, магния, циркония). Кроме того, существуют стабилизирующие добавки, увеличивающие срок хранения готовых взрывных зарядов, и кондиционные, доводящие взрывчатое вещество до требуемого физического состояния.

В связи с развитием и распространением мирового терроризма ужесточились требования к контролю над взрывчатыми веществами. В состав современных взрывчаток в обязательном порядке вводятся химические маркеры, обнаруживаемые в продуктах взрыва и однозначно указывающие на производителя, а также пахучие вещества, помогающие в обнаружении взрывных зарядов служебными собаками и приборами газовой хроматографии.

Поражающие факторы

Поражающие факторы взрыва бывают 2 видов:

Основные

  • Ударная волна. Это переходная область, состоящая из сжатого воздуха. Она молниеносно распространяется во все стороны от центральной точки взрыва.
  • Осколочные поля. Это косвенное воздействие ударной волны, заключается в поражении людей летящими обломками зданий и сооружений, камнями, битым стеклом и другими предметами, увлекаемыми ею. Сюда также относят обломки боеприпасов, взрывных устройств.

Вторичные

  • Разрушительное действие обломков строений, осколков стекол, витрин.
  • Пожары.
  • Обрушения высотных зданий.
  • Заражение среды (воды, земли, воздуха).
  • Разрушения производственных и социальных объектов.

Человеку взрывная воздушная волна, а также продукты взрыва наносят различные по тяжести травмы, нередко несовместимые с жизнью. Повреждения различаются по тяжести в зависимости от зоны, в которой человек находился в момент взрыва.

Выделяют 3 зоны действия взрывной волны. Самыми губительными для человека являются первые две. Тело разрывает на части сжатым воздухом, а также происходит обугливание из-за высокой температуры внутри области взрыва.

До 3 зоны доходят лишь отголоски взрывной волны. Если человек находится в этой зоне, то взрывная волна воспринимается им, как сильный резкий воздушный удар. Здесь возможны повреждения и разрывы внутренних органов, переломы, повреждения барабанных перепонок, черепно-мозговые травмы средней и тяжелой степени.

Значительные повреждения человек получает, когда волна его с силой отбрасывает и ударяет об землю или различные сооружения. Тяжелые травмы, создающие угрозу для жизни, люди получают если при взрыве остались без укрытия. Также опасно находится в момент прихода волны в положении стоя.

Кратко поражающие факторы взрыва:

  • воздушная ударная волна;
  • струи газов;
  • осколки;
  • высокая температура пламени;
  • световое излучение;
  • резкий звук.

Необходимо разделять основные поражающие факторы ядерного взрыва:

  • ударная волна;
  • световое излучение;
  • проникающая радиация;
  • радиоактивное загрязнение и электромагнитный импульс (ЭМИ).

К поражающим факторам ядерного взрыва относятся также рентгеновское излучение и сейсмические волны. Рентгеновское излучение является одним из основных поражающих факторов для баллистических ракет и космических аппаратов.

Техника безопасности при работе с взрывоопасными веществами

Список травм, которые может получить человек из-за несчастных случаев, связанных со взрывчатыми веществами, весьма и весьма обширен: термические и химические ожоги, контузия, нервный шок от удара, ранения от осколков стеклянной или металлической посуды, в которой находились взрывоопасные вещества, повреждения барабанной перепонки. Поэтому техника безопасности при работе со взрывоопасными веществами имеет свои особенности. Например, при работе с ними необходимо иметь предохранительный экран из толстого органического стекла или другого прочного материала. Также тот, кто непосредственно работает со взрывоопасными веществами, должен быть облачен в защитную маску или даже шлем, перчатки и передник из прочного материала.

Взрывчатый краситель

В 1868 году британскому химику Фредерику-Августу Абелю после шестилетних исследований удалось получить прессованный пироксилин. Однако в отношении тринитрофенола (пикриновой кислоты) Абелю была отведена роль «авторитетного тормоза». Еще с начала XIX века были известны взрывчатые свойства солей пикриновой кислоты, но о том, что сама пикриновая кислота способна к взрыву, никто не догадывался до 1873 года. Пикриновая кислота на протяжении века использовалась как краситель. В те времена, когда началось оживленное испытание взрывчатых свойств разных веществ, Абель несколько раз авторитетно заявлял о том, что тринитрофенол абсолютно инертен.

Трехмерная модель молекулы тринитрофенола.

Герман Шпренгель был немцем по происхожде-нию, но жил и работал в Великобритании. Именно он дал французам воз-можность заработать денег на секретном мелините.

В 1873 году немец Герман Шпренгель, создавший целый класс взрывчатых веществ, убедительно показал способность тринитрофенола к детонации, но тут возникла другая сложность — прессованный кристаллический тринитрофенол оказался очень капризным и непредсказуемым — то не взрывался, когда надо, то взрывался, когда не надо.

Пикриновая кислота предстала перед французской Комиссией по взрывчатым веществам. Было установлено, что она — мощнейшее бризантное вещество, уступающее разве только нитроглицерину, но ее слегка подводит кислородный баланс. Также выяснили, что сама пикриновая кислота обладает низкой чувствительностью, а детонируют ее соли, образующиеся при длительном хранении. Эти исследования положили начало полному перевороту во взглядах на пикриновую кислоту. Окончательно недоверие к новому взрывчатому веществу было рассеяно работами парижского химика Тюрпена, который показал, что плавленая пикриновая кислота неузнаваемо меняет свои свойства по сравнению с прессованной кристаллической массой и совершенно теряет свою опасную чувствительность.

Это интересно: позже выяснилось, что сплавлением решаются проблемы с детонацией у сходной с тринитрофенолом взрывчатки — тринитротолуола.

Такие исследования, разумеется, были строго засекречены. И в восьмидесятые годы XIX века, когда французы стали выпускать новое взрывчатое вещество под названием «мелинит», Россия, Германия, Великобритания и США проявили к нему огромный интерес. Ведь фугасное действие боеприпасов, снаряженных мелинитом, выглядит внушительным и в наши дни. Активно заработали разведки, и спустя недолгое время тайна мелинита стала секретом Полишинеля.

В 1890 году Д. И. Менделеев писал морскому министру Чихачеву: «Что же касается до мелинита, разрушительное действие коего превосходит все данные испытания, то по частным источникам с разных сторон однородно понимается, что мелинит есть не что иное, как сплавленная под большим давлением остывшая пикриновая кислота».

Классификация бризантных взрывчатых веществ

Бризантные вещества повышенной мощности

Обладают повышенной скоростью детонации (7500-8500 м/c) и энергией взрыва. Имеют большую чувствительность к начальному импульсу, взрываются от любого капсюля-детонатора, от удара винтовочной пули. От действия открытого огня загораются и горят интенсивно, без копоти и дыма белым или светло-жёлтым пламенем; горение может перейти во взрыв.

Разновидности:

  • ТЭН – тетранитропентааэритрит – (CH₂ONO₂)₄C – белый кристаллический порошок;
  • Нитроглицерин – глицеринтринитрат – CHONO₂(CH₂ONO₂)₂ – маслообразная бесцветная прозрачная жидкость;
  • Гексоген – тримстилентринитроамин – (CH₂)₃N₃(NO₂)₃ – мелкокристаллическое вещество белого цвета без вкуса и запаха;
  • Октоген – циклотетраметилентетранитрамин – C4H8N8O8 – аналог гексогена, однако отличается большей плотностью, более высокой температурой плавления и вспышки;
  • Тетрил – тринитрофнилметилнитроамин – NO23C6H2N(NO2)CH3 – светло-жёлтый, солоноватый на вкус кристаллический порошок.

Бризантные взрывчатые вещества нормальной мощности

Обладают большой стойкостью к внешним воздействиям (кроме динамитов), выдерживают длительное хранение.

Разновидности:

Тротил – тринитротолуол, тол, тритон, ТНТ – С6H2CH3(NO2)3 – кристаллическое вещество от светло-жёлтого до светло-коричневого цвета, горьковатое на вкус; Пластит-4 – С4 – смесевое взрывчатое вещество, состоящее из гексогена (80-90%), полимерного связующего вещества и пластификатора, представляет собой однородную тестообразную массу светло-кремового цвета; Динамиты – состоят из нитроглицерина с добавками нитроэфиров, селитры в смеси с древесной мукой и стабилизаторами

Обладают повышенной чувствительностью к механическим и тепловым воздействиям, требуют повышенной осторожности при транспортировке и ведении взрывных работ. Тринитрофенол – пикриновая кислота, милинит, мелинит, шимозе – C6H2(NO2)3OH – жёлтый или ярко-жёлтый порошок, горький на вкус

Бризантные взрывчатые вещества пониженной мощности

Обладают пониженной бризантностью и меньшей скоростью детонации (не более 5000 м/с). Уступают взрывчатым веществам нормальной мощности по бризантному действию, но равноценны им по работоспособности (фугасности). Основу таких веществ составляет аммиачная селитра, соединённая с наполнителями (взрывчатыми или горючими веществами: алюминиевой пудрой, древесной пылью и т. д.). Применяются в народном хозяйстве.

Принцип действия вакуумной бомбы

В воздухе взрывается облако из распыленного горючего вещества. Основные разрушения производит сверхзвуковая воздушная ударная волна и высокая температура. Почва из-за этого после взрыва больше похожа на лунный грунт, но нет ни химического, ни радиоактивного загрязнения.

Типичная «вакуумная бомба» состоит из контейнера с реагентом и двух независимых зарядов взрывчатого вещества. После сброса или выстрела боеприпаса первый заряд раскрывает контейнер на определенной высоте, распыляя реагент в облако, которое смешивается с атмосферным кислородом (размер облака зависит от количества реагента). Эта смесь затем обволакивает объекты и проникает в сооружения. В этот момент происходит подрыв смеси вторым зарядом, в результате чего образуется мощная ударная волна. Пример такого взрыва мы взяли с сайта Отдела вооружений Центра воздушной войны ВМС США, Чайна лейк, Калифорния:

Где можно использовать вакуумную бомбу?

В одном из материалов журнала «Военные знания» писали, что этот вид оружия может эффективно применяться как против личного состава вне укрытий, так и против вооружений и боевой техники, укрепленных районов и индивидуальных укрытий. Также его можно использовать для создания проходов в минных полях, расчистки посадочных площадок для вертолетов, уничтожения узлов связи и нейтрализации опорных пунктов при уличных боях в черте города, сообщает HRW. Вакуумная бомба способна полностью уничтожить растительность и сельскохозяйственные посевы на определенной территории.

При одновременном использовании большого числа боеприпасов разрушения могут быть более чем значительными. Эффект такого оружия также усиливается в закрытых помещениях. По мощности оно в 12-16 раз превышает обычные взрывчатые вещества при применении по объектам с большой площадью поверхности, таким как каркасные здания, блиндажи и транспортные ангары.

Поражающие факторы вакуумной бомбы

О новом российском оружии пока ничего не известно. У этой авиабомбы пока даже нет официального названия, есть лишь секретный шифр.

А вот, что говорится в заключении Разведывательного управления Министерства обороны США 1993 года (Defense Intelligence Agency, «Fuel-Air and Enhanced-Blast Explosive Technology-Foreign» April 1993) о подобной бомбе меньшей мощности:

– Механизм поражения живых объектов не имеет аналогов. Поражающим фактором является ударная волна, точнее – следующее за ней разрежение (вакуум), приводящее к разрыву легких… Если взрывчатый компонент просто сгорает, не детонируя, жертвы получают тяжелые ожоги и могут также вдохнуть горящее вещество. Поскольку наиболее часто используемые в таких боеприпасах оксид этилена или оксид пропилена высоко токсичны, невзорвавшийся боеприпас будет представлять для личного состава, оказавшегося в его облаке, такую же опасность, как и большинство отравляющих веществ.

Как утверждается в отдельном исследовании ЦРУ США, «воздействие взрыва объемно-детонирующего боеприпаса на замкнутые пространства огромно. В точке воспламенения люди просто сгорают дотла. Находящиеся у периметра с большой долей вероятности получают внутренние, и потому невидимые, повреждения, в том числе разрыв барабанных перепонок и разрушение органов внутреннего уха, сильнейшее сотрясение мозга, разрыв легких и других внутренних органов; возможна также потеря зрения».

В другом документе Разведуправления Министерства обороны высказывается предположение, что поскольку «ударная волна и перепад давления вызывают минимальные повреждения ткани головного мозга, пострадавшие после взрыва объемно-детонирующего боеприпаса могут оставаться в сознании, испытывая страдания в течение нескольких секунд или минут, пока не наступает смерть от удушья».

Октоген

Американские химики впервые получили это вещество в качестве побочного продукта одного из процессов получения гексогена в 1941 году. Через несколько лет октогеном заинтересовались в Пентагоне — оказалось, что новая взрывчатка мощнее гексогена. Считается, что октоген по своей разрушительной мощи превосходит тротил в четыре раза.

При взрыве килограмма тротила выделяется в шесть–восемь раз меньше энергии, чем при сгорании килограмма угля, эффект разрушения достигается за счет того, что энергия при взрыве выделяется в десятки миллионов раз быстрее, чем при  горении.

Однако процесс производства такой взрывчатки на тот момент был дороже по сравнению с гексогеном, поэтому вытеснить его новое вещество не смогло, хотя американская армия применяла новинку во Вьетнаме. Только в 1980-х ученые придумали эффективную и недорогую технологию синтеза октогена.

Инициирующие взрывчатые вещества

Обладают высокой чувствительностью к внешним воздействиям, их взрыв (детонация) оказывает детонационное воздействие на бризантные и метательные ВВ, которые обычно к остальным типам внешнего воздействия не чувствительны вовсе или же обладают неудовлетворительной чувствительностью.

Поэтому, инициирующие вещества и применяют только для возбуждения взрыва бризантных или метательных ВВ. Для обеспечения безопасности применения инициирующих ВВ, их упаковывают в защитные приспособления (капсюль, капсюльная втулка, капсюль – детонатор, электродетонатор, взрыватель). Типичные представители инициирующих ВВ: гремучая ртуть, азид свинца, тенерес (ТНРС).

Гремучая ртуть (фульминат ртути). Это вещество представляет собой мелкокристаллическое сыпучее вещество белого или серого цвета. Ядовита, плохо растворяется в холодной и горячей воде. Получают его из металлической ртути путем обработки ее азотной кислотой и этиловым спиртом в присутствии некоторых добавок: медных опилок и соляной кислоты.

Гремучая ртуть (фульминат ртути) под стеклом.

К удару, трению и тепловому воздействию гремучая ртуть наиболее чувствительна по сравнению с другими инициирующими ВВ, применяемыми на практике. При увлажнении гремучей ртути ее взрывчатые свойства и восприимчивость к начальному импульсу понижаются (например, при 10 % влажности гремучая ртуть только горит, не детонируя, а при 30 % влажности не горит и не детонирует).

При отсутствии влаги, гремучая ртуть не взаимодействует химически с медью и ее сплавами. С алюминием же она взаимодействует энергично с выделением тепла и образованием невзрывчатых соединений (происходит разъединение алюминия). Поэтому гильзы гремучертутных капсюлей изготовлены из меди или мельхиора, а не из алюминия.

Гремучая ртуть разлагается в кислотах и щелочах, а также при нагревании до температуры +50°С и более, а концентрированная серная кислота вызывает ее взрыв. Применяется для снаряжения капсюлей-воспламенителей запалов.

Азид свинца (азотистоводородный свинец) представляет собой белый негигроскопичный мелкокристаллический порошок. При воздействии на него влаги и низких температур не снижает своей чувствительности и способности детонировать. Получают его из металлического натрия и свинца в результате взаимодействия их с аммиаком и азотной кислотой. Интересно то, что азид свинца является единственным из применяемых ВВ, не содержащим кислород.

Азид свинца (азотистоводородный свинец)

Кислоты, щелочи, углекислый газ (особенно в присутствии влаги) и солнечный свет медленно разлагают азид свинца. Температурные колебания не влияют на его стойкость, но при нагревании до +200°С он начинает разлагаться.

По сравнению с гремучей ртутью, азиц свинца менее чувствителен к искре, лучу пламени и удару: но инициирующая способность азида свинца выше, чем у гремучей ртути. Так, например, для инициирования одного грамма тетрила нужно 0,29 г гремучей ртути и только 0,025 г азида свинца.

Для надежности возбуждения детонации азида свинца от искры и накола его покрывают, соответственно, слоем тенереса или специального накольного состава.

Азид свинца химически не взаимодействует с алюминием, но взаимодействует с медью и ее сплавами, с образованием азида меди, который во много раз чувствительнее азида свинца, поэтому гильзы капсюлей снаряжаемых азидом свинца, изготовляются из алюминия, а не из меди. Применяется для снаряжения капсюлей-детонаторов.

Тенерес или ТНРС (тринитрорезорцинат свинца) – несыпучий мелкокристаллический порошок желтого цвета, малогигроскопичный и не взаимодействующий с металлами, представляет собой свинцовую соль стифниновой кислоты. Не подвержен разложению кислотами. Под действием солнечного света тенерес темнеет и разлагается. Температурные колебания на тенерес действуют так же, как и на азид свинца. Растворимость тенереса в воде незначительна.

Инициирующая способность тоже весьма незначительна (даже 2 грамма тенереса не вызывают детонации тетрила), поэтому тенерес как самостоятельное инициирующее вещество не применяется, а вследствие своей большей чувствительности к искре и лучу пламени по сравнению с азидом свинца идет вместе с ним на снаряжение капсюлей-детонаторов.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий