Правила технической эксплуатации поршневых насосов
При обслуживании поршневых насосов необходимо руководствоваться «Правилами обслуживания СВМ и ухода за ними», а также инструкцией завода-изготовителя.
Перед пуском насоса в ход необходимо.
- 1) произвести тщательный наружный осмотр, проверить наличие масел в местах смазки;
- 2) убедится в том, что емкости готовы к перекачке жидкости, открыть клапанына всасывание и нагнетание;
- 3) проверить плотность набивки сальников;
- 4) перед пуском насоса необходимо провернуть его на один оборот.
Контроль за работой насоса ведут по приборам, в случае появления внеэксплуатационных шумов и стуков, повышенной вибрации насос необходимо остановить и устранить неисправность.
Литература
Вспомогательные механизмы и судовые системы. Э. В. Корнилов, П. В. Бойко, Э. И. Голофастов (2009)
4.5 Rating 4.50 (1 Vote)
Нерегулируемые пластинчатые насосы
В нерегулируемых насосах отсутствует возможность изменения рабочего объема. Подачу таких насосов можно регулировать путем изменения частоты вращения приводного двигателя или использовать дроссельное регулирование гидропривода.
//www.youtube.com/embed/P_cCwSbwusA
Устройство пластинчатого насоса двукратного действия
Внутренняя поверхность статора 1 имеет овальную форму. Ротор 2 установлен соосно статору. В пазах 3 ротора установлены пластины 4, которые могут свободно перемещаться внутри пазов. При вращении ротора пластины за счет центробежной силы пластины прижимаются к поверхности статора образуя рабочие камеры. В связи с тем, что внутренняя поверхность статора имеет овальную форму при вращении ротора объем рабочих камер будет изменяться. В зонах 6 и 7 увеличения объема камеры выполнено отверстие для всасывания рабочей жидкости, в зонах 5 и 8 уменьшения объема камеры – отверстие для нагнетания.
В насосах двойного действия устанавливается четное число пластин (не менее 8).
Расчет рабочего объема пластинчатого насоса двойного действия
Рабочий объем насоса определяется минимальным Rc1 и максимальным радиусами Rc2 внутренней поверхности статора, толщиной ∆ и количеством z пластин, а также углом их наклона ξ.
Вычислить рабочий объем насоса двойного действия можно по формуле:
Подача пластинчатого насоса
Подача объемного насоса – это произведение его рабочего объема на частоту вращения приводного двигателя.
Q = V · n
Принцип работы пластинчатого насоса однократного действия
Пластинчатый насос однократного действия показан на рисунке.
Ротор 1 установлен в статоре 2 с эксцентриситетом. В роторе 1 в радиальном направлении выполнены пазы 3, в которых установлены подвижные пластины 4. При вращении ротора пластины под действием центробежной силы прижимаются к цилиндрической поверхности статора. За счет эксцентриситета между осями вращения ротора и статора обеспечивается изменение объемов рабочих камер.
В зоне 6 увеличения объема камеры происходит всасывание рабочей жидкости, зоне 5 уменьшения – нагнетание.
В насосах одинарного действия используется нечетное число пластин (не менее 3).
Расчет рабочего объема пластинчатого насоса одинарного действия
Рабочий объем насоса зависит от радиусов ротора r статора R и эксцентриситета e.
Эти величины связаны зависимостью:
e = R – r – a
где a – минимальный зазор между ротором и статором.
Максимальный рабочий объем пластинчатого насоса одинарного действия можно определить по формуле:
Если полости под пластин при их выдвижении соединяются с линией всасывания, а при задвижении – с линией нагнетания, то рабочий объем такого насоса можно определить по формуле:
∆ – толщина пластин z – количество пластин b – ширина статора
Для точного определения объема рабочей камеры необходимо учесть закон перемещения пластин в роторе во время его вращения. Уточненная формула для определения рабочего объема однократного пластинчатого насоса выглядит следующим образом:
Значение коэффициента k будет зависеть от количества пластин в насосе.
В пластинчатых насосах однократного действия нагрузки неравномерны, сила давления действует на ротор только со стороны полости нагнетания. По этой причине насосы однократного действия предназначены для работы на давлении до 12 МПа. Эта проблема устранена в насосах двойного действия, где действие сил давления на ротор уравновешено.
Устройство и принцип действия поршневых насосов
Поршневым насосом называется возвратно-поступательный насос, у которого рабочие органы выполнены в виде поршней. По количеству поршней эти насосы разделяются на однопоршневые, двухпоршневые, трехпоршневые и многопоршневые. По числу циклов нагнетания и всасывания за один двойной ход поршня различают насосы одностороннего действия, двустороннего действия и дифференциальные.
Схема однопоршневого насоса одностороннего действия представлена на
рис. 3.1.
При движении поршня вправо в левой полости цилиндра и в рабочей камере создается разрежение. За счет разрежения верхний нагнетательный клапан Кн прижимается к седлу, а нижний всасывающий клапан Кв приподнимается, и в создавшийся зазор по всасывающей трубе засасывается жидкость из источника в рабочую камеру. При движении поршня влево в рабочей камере создается повышенное давление, под действием которого всасывающий клапан Кв закрывается, а нагнетательный клапан Кн приподнимается, и жидкость вытесняется из цилиндра в напорный трубопровод.
При многократном возвратно-поступательном движении поршня вода перемещается по всасывающей трубе через цилиндр насоса в нагнетательную трубу и дальше к месту потребления. При этом подача жидкости в нагнетательную линию оказывается неравномерной, что является существенным недостатком насосов одностороннего действия. Для устранения этого недостатка применяются насосы двустороннего действия.
На рис. 3.2 представлена схема насоса двустороннего действия (с двумя рабочими камерами). Процесс всасывания в одной камере идет одновременно с процессом нагнетания в другой.
Для обеспечения равномерности подачи применяются дифференциальные насосы (поршневые и плунжерные). На рис. 3.3 показана схема дифференциального насоса с диаметрами поршней D1 и D2. На всасывающей стороне он работает как насос одностороннего действия, на нагнетательной стороне – как насос двустороннего действия. Его отличительной особенностью является то, что за один оборот вала кривошипа он производит всасывание за один ход поршня, а нагнетание жидкости – в течение обоих ходов поршня, вытесняя ее поочередно из камер А и Б в нагнетательный трубопровод.
По направлению оси движения рабочих органов поршневые (плунжерные) насосы могут быть горизонтальными и вертикальными.
Основные понятия, применяющиеся в теории насосов
На рис. 3.4 показана схема насосной установки, состоящей из насосного агрегата 1, в состав которого входят насос и двигатель (на схеме двигатель не показан), всасывающей трубы 2 и напорного трубопровода 3, отводящего из насоса жидкость к месту назначения.
В нижней части всасывающей трубы имеется сетка 4, предохраняющая всасывающую трубу от попадания посторонних предметов и обратный клапан, необходимый для заливки насоса жидкостью перед пуском (в лопастных насосах) и предупреждающий обратное движение жидкости в случае остановки насоса.
В теории насосов применяется ряд терминов и определений, относящихся к насосам всех типов, в том числе и к поршневым насосам.
В работающем насосе жидкости сообщается дополнительная энергия, которая расходуется на преодоление сопротивлений в напорном трубопроводе и на подъем жидкости в резервуар. Вертикальное расстояние hвс от свободной поверхности водоема до центра насоса называется вакуумметрической высотой всасывания. Потери энергии во всасывающем трубопроводе называются потерями при всасывании Вертикальное расстояние hн от центра насоса до уровня воды в резервуаре называется геодезической высотой нагнетания. Потери энергии в напорной линии называются потерями при нагнетании. Сумма геодезических высот hвс + hн, сложенная с суммой потерь энергии в системе, называется напором насосаН:
Напор, развиваемый насосом, представляет собой количество энергии, сообщаемое насосом единице массы перекачиваемой жидкости. Напор измеряется в метрах столба перекачиваемой жидкости или в единицах давления.
Напор, развиваемый работающим насосом, можно определить также по формуле (7.9) с использованием показаний вакуумметра и манометра, которыми обычно оборудуются насосные установки (рис. 3.4):
hм – показание манометра, выраженное в метрах столба перекачиваемой жидкости;
hв – показание вакуумметра, выраженное в метрах столба перекачиваемой жидкости;
Δh – вертикальное расстояние между точками присоединения манометра и вакуумметра, м;
wн, wв – скорости в нагнетательной и всасывающей линиях (в местах присоединения манометра и вакуумметра), м/с;
Одним из основных технических показателей насоса является также давление насоса р:
Напор насоса Н и давление насоса р связаны между собой зависимостью
Роторные насосы
Это типы водяных насосов, которые отличаются от других типов отсутствием клапана. Перекачивание воды происходит за счет ее выталкивания под давлением. Основным рабочим механизмом в конструкции считается ротор. При движении ротор меняет объем замкнутого пространства. В таком положении элемента жидкость выталкивается.
Роторные водяные насосы работают с минимальным уровнем шума и без вибраций, поэтому пользуются спросом для решения бытовых задач. Конструкцией роторного насоса предусмотрена возможность обратной подачи жидкости. Роторный насос способен выкачивать жидкости любой плотности и вязкости. Такие модели имеются высокий коэффициент полезного действия.
Роторный насос по своим свойствам превосходит центробежный при определенных условиях эксплуатации
При выборе эффективного насоса стоит обратить внимание на диаграмму диапазона и характеристики конкретной модели. Современные модели роторных насосов отличаются надежностью и улучшенным рабочим диапазоном
Их часто используют в среде с ограниченным доступом к энергопотреблению. В таких условиях они демонстрируют максимальную эффективность.
Конструкция роторного насоса включает несколько элементов:
- насосную полость с элементами, которые проводятся в действие приводным валом. Это вращательное движение является отличительной чертой роторных агрегатов;
- всасывающий патрубок. Через него вращающиеся элементы насоса втягивают жидкость.
Насосные элементы характеризуются плотно прилегающими рабочими зазорами. Такие насосы не нуждаются в отдельных впускных или выпускных клапанах. Объем перекачиваемой жидкости или смещение определяются ротором и насосной полостью.
Ручные гидравлические насосы НРГ
Гидронасосы НРГ очень надежные устройства и весьма распространены у нас в России так как производятся здесь же. Линейка НРГ насосов содержит устройства с распределителями. В конце обозначения таких инструментов обычно ставится буква «Р». Эта буква означает что инструмент может работать с гидроустройствами двустороннего действия. Рассмотрим несколько моделей НРГ гидронасосов ручного типа:
Насосы НРГ
- Модель нрг-7020Р. Создает максимальное давление в 700 бар. И имеет номинальный объем бака 2 литра. В комплекте идет гидрораспределитель который позволяет работать с устройствами как одностороннего, так и двустороннего действия.
- Модель нрг-7007. Также создает давление в 700 бар. Номинальный объем бака 0,7 литра. Достоинствами этой модели является присутствие предохранительного клапана, усилие на рукоятке минимально, и две ступени подачи масла. Данный инструмент предназначен для гидроинструмента одностороннего действия, с пружинным возвратом штока.
- Модель нрг-67016Р. Номинальный объем бака равен 14 литрам. Усилие на рукоять 55 кг. Давление максимум 4Мпа. Производительность 115 куб см. Весит такое устройство целых 30 кг и весьма габаритно. Подойдет для небольшого автосервиса.
Достоинства и недостатки радиально поршневых насосов
Положительные стороны:
- Производят высокое давление в гидравлической системе;
- Есть модели с опцией регулирования рабочего объема подачи;
- КПД находится на достаточно высоком уровне при большом давлении;
- Высокая энергоемкость на единицу массы;
Отрицательные стороны:
- Сложное устройство, небольшая надежность;
- Необходимость специфичной обработки деталей, а также сложное строение самого насоса приводит к высокой цене на данные агрегаты;
- Нужна тонкая фильтрация рабочей жидкости;
- Высокая пульсация подачи и расхода;
- Занимают много места;
- Низкий вращающий момент основного вала;
Сферы применения
Благодаря своей универсальности, высокой эффективности и надежности центробежные насосы сегодня успешно применяются практически везде. Если говорить о наиболее популярных областях использования насосов центробежного типа, то сюда следует отнести:
- организацию технического водоснабжения на предприятиях, работающих в различных отраслях промышленности;
- перекачивание и транспортировку технических жидкостей различного типа между объектами производства;
- оснащение систем полива растений и подачу воды на животноводческие фермы;
- организацию системы водоснабжения населенных пунктов;
- оснащение автономных систем водоснабжения, используемых собственниками загородных домов и дач для бытовых нужд и организации полива растений на приусадебном участке.
Центробежный насос гигиенического исполнения для пищевой, фармацевтической и косметической промышленностей
Для того чтобы понять, в чем состоит причина универсальности и высокой эффективности гидромашин центробежного типа, следует разобраться в том, из каких конструктивных элементов состоит и как работает такое оборудование.
Вал и подшипники
Какой бы вид колеса не применялся, он закреплен на вращающемся валу. Вал должен быть закреплен в корпусе подшипниками одним из 2 способов:
- Консольно
- Симметрично
Консольное закрепление
При консольном укреплении вала, рабочее колесо закреплено на одном конце, а подшипники на другом.
Такая конструкция располагает всасывающее и напорное отверстие перпендикулярно друг другу, а всасывающее отверстие – прямо перед центром колеса.
Такие насосы называются насосы с торцевым всасыванием. Они широко распространены из-за своей дешевизны и простоты производства, но они имеют один недостаток, связанный с путём движения жидкости.
Во время работы насоса, создается зона с низким давлением во всасывающем отверстии.
Есть зона повышенного давления на выходе из колеса, из которого жидкость, получившая энергию, попадает в спиральный кожух.
Жидкость течет к задней пластине в открытых и полуоткрытых колесах, что полностью разрушает баланс давлений. В результате возникает осевая сила или нагрузка – выталкивающая колесо к всасывающему отверстию.
Это можно компенсировать, устанавливая сильные подшипники или просверлив дырки в пластине колеса для выравнивания давлений. Но это не эффективные способы.
Симметричное крепление
Более действенное решение – расположение вала на подшипниках с двух сторон. Это называется симметричной конструкцией.
Поддержку вала улучшает не только расположения подшипников с двух сторон, но и возможность использовать симметрические закрытые колеса с двойным всасыванием.
Поскольку есть такие же зоны с высоким и низким давлением на обеих сторонах колеса, это успешно устраняет нагрузочные силы, благодаря балансу давлений. Так же эта конструкция имеет иное преимущество. Всасывающее и напорное отверстия расположены параллельно друг другу на противоположных сторонах насоса, и корпус разделён по оси.
Просто открутив болты и сняв крышку, обслуживающий техник может добраться до вращающейся части насоса внутри него без извлечения всего насоса из системы.
Благодаря раздельной осевой конструкции, насосы в симметричном расположении подшипников называют насосами с разборным корпусом.
Всё это, конечно же, очень весомые причины для того чтобы установить в своей шахте такой насос прямо сейчас. Но есть некоторые недостатки. Потому что обслуживающие операции и требования к уплотнению более сложные для насосов с разборным корпусом, чем для насосов с торцевым всасыванием. Они так же более дорогие.
Устройство и схема гидравлического насоса с ручным приводом
Схема гидравлического насоса ручного
Ручной гидронасос состоит из двух главных частей, качающий узел (1) и гидравлический бак (2). Они соединены между собой шпилькой (3). Заливать жидкость нужно через отверстие, предварительно открутив закрывающую его пробку (4). Ручка (6) с рычагом (7) приводит в движение плунжер (8) первой и второй ступеней, сделанных как одна деталь. Качающий узел имеет двухступенчатую структуру. Ступень номер один при пониженном давлении и большей производительности служит для ускоренного перемещения плунжера гидроцилиндра. Ступень номер два при высоком давлении и меньшей производительности служит для получения рабочего усилия исполнительного механизма. Защиту от перегрузки осуществляет предохранительный клапан (9). Скидывание давления и извлечение гидравлической жидкости из полости цилиндра в бак происходит с помощью винта (10).
Шестеренные гидромотора
Такие двигатели имеют много схожего с шестеренными насосными агрегатами, но с разницей в виде отвода жидкости из подшипниковой зоны. При поступлении рабочей среды в гидромотор начинается взаимодействие с шестерней, что и создает крутящий момент. Простая конструкция и невысокая стоимость технической реализации сделало популярным такое устройство гидромотора, хотя низкая производительность (КПД порядка 0,9) не позволяет применять его в ответственных задачах силового обеспечения. Данный механизм часто используют в схемах управления навесным оборудованием, в станочных приводных системах и обеспечении функции вспомогательных органов различных машин, где номинальная частота рабочего вращения укладывается в 10 000 об/мин.
Аксиально-поршневой насос с наклонным блоком
У аксиальныхгидронасосов с наклонным блоком цилиндров (рис.37) приводной вал 1, имеющий вит буквы “Т”, установлен в радиально-упорных подшипниках, а блок цилиндров 4, опирающийся на ось 5, наклонен под углом α к оси вала и имеет ряд аксиальных расточек, в которых размещены поршни 3, связанные с валом с помощью шатунов 2. При вращении вала 1 блок цилиндров также вращается, причем это вращение передается от вала к нему через шатуны и поршни, а из-за наличия угла α между осями вала блоком цилиндра половина поршней будет, выдвигается из ротора. А другая половина — вдвигаться внутрь ротора, увеличивая и уменьшая объем рабочих камер, соответственно, и осуществляя тем самым всасывание и вытеснение рабочей жидкости. Жидкость заполняет рабочие камеры и вытесняется из них через окна в донышке блока цилиндров (рис.37 б) и через окна в распределительном диске 6 (рис.37 в), и далее через каналы в корпусе насоса.
Если угол наклона блока цилиндров α изменять, то будет изменяться и величина хода поршней, а значит и величина рабочего объема насоса, т.е. насос, у которого угол α – величина переменная является насосом с регулируемой подачей.
Устройство и принцип работы пластинчатого насоса
Иногда возникает необходимость в перекачке смесей, которые начинают густеть при снижении температуры, поэтому требуется особое насосное оборудование, способное обогревать транспортируемую массу и не давать ей загустевать. С этой задачей может справиться пластинчатый насос, который имеет специальную рубашку для обогрева рабочей смеси. Этот агрегат может перекачивать разные типы веществ: с содержанием абразивных частиц, кашицеобразные, с примесью посторонних мелких включений, смол и различных клейких смесей. Насос может выкачивать жидкости через шланг, погружённый в ёмкость. Этот агрегат имеет повышенную всасывающую силу и может функционировать с одинаковым усилием в двух направлениях.
По каким критериям нужно выбирать?
Есть несколько основных критериев, по которым нужно выбирать насосы. Так вы сможете обеспечить себе не только оптимальную стоимость и характеристики устройства, но и исключите возможность того, что часто придется делать ремонт насосов вследствие их неисправности:
- Габариты. Наиболее оптимальным является использование насосов с НД, так как в них отсутствует слишком громоздкий узел подшипников, консольный вал и специальная отклоняемая люлька, в которой располагается блок цилиндров. Особенно это относится к регулируемым устройствам. Помимо этого, момент инерции в люльках в насосах с НД значительно меньше по сравнению с НБ, в связи с чем они отличаются более высоким быстродействием при необходимости изменения подачи.
- Трудоемкость в изготовлении. Опять же, более актуально будет использовать насосы с НД, так как они отличаются незначительной металлоемкостью, а также минимальным числом деталей повышенной точности. Многие эксперты говорят о том, что насосы с НБ изготавливать приблизительно на 8-12% сложнее по сравнению с насосами с НД, так как в них присутствует более сложная поршневая группа и различные синхронизирующие устройства.
- Долговечность. В данном случае насосы с НД отличаются меньшей нагруженностью подшипников, а также предусматривают более широкое использование гидростатических опор. Стоит отметить тот факт, что в устройствах с НБ нагрузка на подшипники практически не зависит от угла наклона блока, в то время как в машинах с НД она является пропорциональной тангенсу данного угла. Данное обстоятельство, а также незначительная энергия вращающихся деталей довольно выгодно отличают эти устройства при необходимости их использования в насосных агрегатах переменной производительности с постоянным давлением. Таким образом, при давлении 32 Мпа гидронасосы с НБ смогут работать около 10000 часов, в то время как при одинаковых условиях НД насосы работают более 13000 часов.
- КПД. С этой точки зрения насосы с НБ являются более актуальными, так как в НД-насосах присутствуют значительные механические потери из-за более высоких радиальных сил, оказывающих влияние на поршни, широкого использования гидростатических опор, а также значительных линейных скоростей в парах трения, такие устройства отличаются большей утечкой. В целом именно эти факторы в конечном итоге обуславливают более низкий КПД. Таким образом, при том же давлении 32 Мпа КПД устройств с НД составляет около 90%, в то время как машины с НБ будут иметь КПД на уровне 92-93%.
- Частота вращения. Поршень насоса с НБ позволяет обеспечивать систему распределения с минимальными радиальными размерами. При ограниченности линейных скоростей предусматривается возможность их использования при предельно высоких частотах вращения, что в конечном итоге позволяет добиться значительной энергоемкости данного оборудования.
- Всасывающая способность. По этому параметру также схема насоса с НБ смотрится более привлекательно, потому что они оснащаются меньшими размерами окружных скоростей окон цилиндров, в то время как сами окна могут иметь достаточно больше размеры, что минимизирует возможность снижения подачи из-за кавитации. Всасывающая способность таких насосов выше по той причине, что у них присутствуют минимальные мертвые объемы рабочих камер, а помимо этого проточные части насосов являются более короткими, что также позволяет снизить потери.
Применение:
- Чистка любых поверхностей от краски;
- Прочистка труб в различных системах;
- Вычищение внутренних поверхностей емкостей;
- Чистка топок, котлов, теплообменников;
- Резка бетона, кирпича, цемента;
- Снятие шпаклевки, резины, коррозии с любых поверхностей;
- Удаление разметки на асфальте
- Счистка граффити
- Предание шероховатости поверхностям для их последующего склеивания;
- Чистка железнодорожных вагонов изнутри;
- Опреснение соленой воды;
- Очистка воды обратным осмосом;
- Дробление камней, грунта;
- Разрезание кожи, дерева, пластмассы;
- Удаление тугоплавких смол с поверхностей;
- Удаление нечистот со дна автомобилей, поставленных на ремонт.
Струйные типы насосов
Предназначены для работы со всеми типами жидкостей. Струйные насосы могут устанавливаться вертикально или горизонтально. В конструкции агрегатов предусмотрено несколько входов, которые используются для всасывания постоянного потока жидкости с использованием давления для создания подъемной силы. Давление на всасывании и скорости жидкости обеспечивают выталкивание жидкости из источника, транспортируя ее в конечную точку.
Струйный насос или инжектор объединяет в себе функции струйного и центробежного устройства. Конструктивно наличие части центробежного насоса в составе струйного специально разработана для работы в сочетании с инжектором. Сам инжектор увеличивает давление центробежного насоса примерно на 60 процентов, обеспечивая нужное давление. Струйные насосы превосходят центробежные именно благодаря своей способности повышать давление.
В зависимости от глубины скважины определяют принцип работы оборудования. Так, для использования в неглубокой скважине дна труба соединяется со входом скважины и проходит вниз в источник с жидкостью. Если же нужно выкачать воду из более глубокого источника, нужно два канала для воды. Один используется для вытеснения воды, второй – для промывочной воды. Струйные насосы для глубоких скважин бывают однотрубные и двухтрубные.
Для работы всех струйных насосов действует универсальное правило: должен быть обратный клапан внизу всасывающей трубы. Такая система исключает попадание воды обратно в колодец при выключенном положении оборудования. Многие струйные насосы являются самовсасывающими, поэтому способны поддерживать достаточный уровень вакуума для всасывания жидкости.
При выборе струйного насоса обязательно учитывается тип перекачиваемой жидкости. От него зависит скорость потока. Например, в скважинах с примесями твердых частиц лучше применять агрегат с кольцевым соплом. Струйные насосы могут быть изготовлены из высокопрочных видов пластика, стали, нержавеющей стали. Если вы выбираете материалы, поддающиеся коррозии, обязательно нужно обеспечить антикоррозийную защиту.
Характеристики поршневых насосов
Важнейшие характеристики поршневых насосов: зависимости подачи от напора при постоянной частоте вращения Q= f (n), к.п.д. от подачи ɳ = f (Q), а также мощности от частоты вращения (числа двойных ходов поршня), от подачи n напора N=f(n); N = f(Q); N=f(H). Они, как правило, представлены графически в формулярах.
Характеристика поршневого насоса Q= f(H) изображена на рис. 2.34, а. Подача поршневого насоса при постоянной частоте вращения приводного двигателя теоретически не зависит от напора. Поэтому теоретическая характеристика представляет собой изображенную пунктирную прямую линию QT. В действительности при увеличении напора увеличиваются протечки через зазоры, поэтому подача несколько уменьшается и реальная характеристика представляет собой монотонно нисходящую кривую Q = f(H).
Подача поршневого насоса, как и любого другого объемного насоса, изменяется пропорционально часто те вращения вала приводного двигателя насоса. Ха рактеристика при любой частоте вращения (числе двойных ходов поршня) имеет вид кривой, изображенной на рис. 2.34, a, но проходит в зависимости от частоты вращения выше или ниже ее.
К.п.д. поршневого насоса ɳ = f(Q), (рис. 2.34, б) минимален при малых подачах и растет с увеличением подачи, однако в диапазоне изменения подач от 40 до 140% номинальной изменяется незначительно. Кривая ɳmax относится к прямодействующим насосам большой подачи при малых напорах (Q=100-300 м3/ч; Н=40-60 м вод. ст.).
Кривая nmin относится к быстроходным насосам малой подачи при больших напорах (Q = 25-80 м3/ч; Н = 100-500 м вод. ст.).
Зависимости мощности от частоты вращения (числа двойных ходов поршня), от подачи и напора N = f2 (n); N = f2 (Q); N = f3 (H) изображены на рис. 2.34, в и свидетельствуют, что мощность поршневого насоса линейно зависит от частоты вращения, от подачи и напора. Характеристики каждого конкретного насоса приведены в формуляре насоса.
Поршневые насосы обладают свойством сухого всасывания и большой высотой всасывания. Напор поршневых насосов ограничивается только мощностью приводного механизма и прочностью конструкций самого насоса. Насос может работать с практически одинаковой подачей в большом диапазоне изменения напоров.
Принцип действия
В упрощенном виде функция таких агрегатов напоминает обычный шприц или водозаборную колонку, в которой носитель замещается клапаном. Но, есть и особенности, которыми обладает поршневой жидкостный насос. Принцип действия в данном случае предусматривает, что принимающий трубопровод будет также иметь закрывающийся клапан. Благодаря такому устройству жидкость не может поступать обратно в цилиндр.
Несмотря на простую схему рабочего процесса, есть один существенный недостаток у таких насосов. Дело в том, что возвратно-поступательные действия не предполагают равномерную и плавную подачу носителя. Скачкообразные темпы, в которых работает поршневой жидкостный насос, могут доставлять трудности для последующего обслуживания принимающих коммуникаций. Впрочем, использование нескольких поршней позволяет минимизировать этот недостаток.