Рычажные механизмы: анализ, типы, применение

Как устроен механизм стеклоподъёмника.

Согласитесь, удобно сидя в машине, лёгким нажатием кнопки открыть или закрыть окно.

Иногда даже не задумываешься, а как же устроен этот хитрый механизм стеклоподъёмника.

Заглянем внутрь. Любой среднестатистический Электрический стеклоподъёмник состоит из элементов:

  • приводной механизм;
  • механизм подъёма;
  • блок управления стеклоподъёмниками.

Приводной механизм

Представляет собой обыкновенный электромотор, приводящий в движение через хитрую систему червячной и зубчатой передач механизм подъёма. А вот с ним не всё так просто.

Подъемный механизм

Дело в том, что инженеры придумали несколько вариантов подъёмных приспособлений, а если точнее:

  • тросовый;
  • рычажный;
  • реечный.

Тросовый

В первом случае двигатель стеклоподъёмников воздействует на гибкий элемент – трос, цепь или ремень. Собственно, это понятно из самого названия разновидности привода.

Гибкий элемент закреплён системой роликов внутри дверной панели авто, а к стеклу крепится при помощи пластины. Всё устроено так, чтобы трос мог двигаться поступательно вверх и вниз.

В принципе, этот вариант механизма наиболее простой и ремонтопригодный.

Рычажный

Рычажные устройства пользуются популярностью у тех автопроизводителей, которые ценят компактность.

Главным действующим звеном механизма, как несложно догадаться, выступает рычаг (один или несколько), соединённый с двигателем стеклоподъёмников через шестерню.

Одним из недостатков рычажной системы является неравномерность скорости движения стекла.

Возможные проблемы и важные особенности

При работе рассматриваемого механизма велика вероятность возникновения самых различных проблем. Примером можно назвать проскок положения максимума и многие другие. Для предотвращения проблем следует:

  1. Проводить своевременное обслуживание.
  2. Соблюдать технику безопасности.
  3. Выполнять периодическую замену различных деталей.

Также следует уделять внимание тому, какой период смазки коленно-рычажного механизма. Только при своевременной подаче смазывающего вещества можно существенно снизить степень износа основных элементов

Стоит учитывать, что для рассматриваемого рычажного механизма требуется специальная жидкость, обладающая особыми свойствами.

Проскок положения максимума

Как выше было указано, довольно большое распространение получил случай проскока положения максимума. Среди особенностей этого момента отметим следующее:

  1. На момент, когда все три шарнира находится на одной линии оказывается наибольшее усилие смыкания.
  2. В данном положении шток вытянут максимально, неосторожные действия могут стать причиной повреждения конструкции.
  3. Если конструкция была настроено неправильно, то серьги проскакивают положение крайней точки. Подобное явление становится причиной, по которой шток не может вернуться в первоначальное положение.

На момент максимального перемещения штока оказывается сильное давление, за счет чего возникает вероятность деформации основных элементов. Именно поэтому проскок положения максимума приводит к механическому повреждения станка.

Оверлок

Проблема может возникать также в случае неправильной регулировки рычажного механизма. Примером можно назвать случай, когда усилия цилиндра недостаточно для открытия основных элементов. Особенности проблемы следующие:

  1. На колонны в большинстве случаев надеваются ленточные нагреватели.
  2. За счет нагрева до определенной температуры происходит удлинение колонны, за счет чего снижается степень оказываемой нагрузки.

В подобном случае запрещается открывать форму до полного открытия колонн. Это связано с тем, что возникающая нагрузка может стать причиной деформации направляющих элементов. Если они потеряют свою форму, то в дальнейшем существенно усложниться ход подвижных элементов.

Назначение и область применения

Кулачковый механизм превращает вращение в линейное перемещение малой амплитуды. На практике это короткое линейное движение используется для выполнения следующих операций:

  • сцепление или расцепление частей механизма;
  • открытие или закрытие клапана;
  • возвратно- поступательно движение какого-либо исполнительного органа изделия;
  • повторение исполнительным органом наперед заданной в конфигурации поверхности кулачка сложной пространственной траектории.

Эти операции находят применение в следующих устройствах и системах:

  • управление клапанами двигателей внутреннего сгорания;
  • топливные и масляные насосы;
  • приводы гидравлических и пневматических тормозных систем;
  • распределитель зажигания в устаревшем карбюраторном двигателе;
  • привод перемены передач в трансмиссиях мотоциклов и другого двухтактного транспорта;
  • швейные машины;
  • музыкальные механизмы: механический орган, шарманка, шкатулка и т. п.;
  • транспортно- технологические машины;
  • таймеры с механическим приводом;
  • сельскохозяйственные механизмы, комбайны, осуществляющие уборку и сортировку корнеплодов или злаков;

Кроме того, широчайшая область использования кулачковых пар лежит там, где требуется не погасить, а, наоборот, создать вибрацию. Они находят применение в вибромашинах, служащих для уплотнения грунта или бетонных полов в строительстве. Горная техника, используемая при добыче рудных материалов, также производит сортировку тонких фракций на вибростолах, приводимых в движение кулачковыми парами.

Еще одна важная сфера применения – точные измерительные приборы и средства механической и электромеханической автоматизации. Контактный манометр и многие другие прецизионные приборы широко используют кулачковые пары для передачи вращения стрелки на шток, замыкающий контактные группы.

Используются кулачковые устройства в малых и средних металлообрабатывающих станках для переключения передач, периодического перемещения рабочих органов.

В производственных технологических установках в химической, пищевой и фармацевтической промышленности устройства используются для дозированной подачи сыпучего сырья к месту дальнейшей переработки.

Несмотря на стремительное совершенствование электронных средств управления, старая проверенная кулачковая пара уверенно удерживает свои позиции там, где требуется многократно повторять однообразные движения с высокой точностью.

Качественные показатели рычажных механизмов

Для формирования общего описания устройства применяются различные качественные показатели, которые могут касаться самых различных моментов. Наиболее распространенными можно назвать:

  1. КПД считается наиболее важным параметром, который рассматривается при создании самых различных механизмов. Эта безразмерная величина определяет количество энергии, которая применяется для достижения поставленных целей с учетом потерь. Стоит учитывать тот момент, что подобный показатель рычажного механизма находится всегда меньше единицы, то есть при работе возникают потери. При приближении значения КПД к единице существенно снижаются потери, а также повышается качество рычажного механизма. Провести расчет рассматриваемого показателя достаточно сложно, так как для этого требуются самые различные формулы.
  2. Ход механизма также учитывается при проектировании подходящего устройства. Ход определяется начальной и конечной точкой. При этом стоит учитывать, что в некоторых случаях провести расчеты достаточно сложно, так как траектория движения может быть криволинейной.
  3. Угол размаха коромысла измеряется путем вычитания двух крайних точек положения на момент работы. В большинстве случаев устройство совершает повторяющееся цикличное движение.
  4. Коэффициент, отражающий неравномерность распределения средней скорости. Этот показатель определяется соотношением времени холостого хода к рабочему. Провести соответствующие расчеты можно только при применении формул, а также построении чертежа.
  5. Угол давления и передачи. Подобный параметр представлен соотношением острого угла между векторной активной силы, которая действует на предшествующем звене.

Каждый параметр рассматриваемые в отдельности, после чего составляется оценочный анализ, отражающий общее состояние механизма.

Устройство и принцип действия одинарного механизма смыкания

Подобный агрегат представлен сочетанием нескольких конструктивных элементов, за счет которых обеспечивается передача и увеличение усилия. Основными деталями можно назвать:

  1. Две неподвижные траверсы. Их соединение проводится при помощи цилиндрической колонны.
  2. Крепление проводится при помощи гаек и контргаек, которые существенно повышают прочность конструкции.
  3. Передача усилия осуществляется за счет гидравлического цилиндра. Его крепление проводится при помощи шарниров.
  4. Также есть серьги.

Принцип действия механизма достаточно сложный. Характеризуется он следующим образом:

  1. Смещение поршня вниз в гидравлическом блоке происходит выпрямление серьги, она совмещается с горизонтальной осью.
  2. В результате совмещения осей происходит соединение шарниров.
  3. Шарниры монтируются так, чтобы при контакте расстояние между ними было меньше, чем суммарная длина обеих серег.
  4. Выпрямление серег происходит за счет распорного усилия.

Приведенная выше информация определяет то, что главным недостатком конструкции становятся нескомпенсированные боковые усилия, которая возникают из-за нагрузки втулок и колонн. Именно поэтому рекомендуется использовать подобный вариант исполнения только в случае передачи небольшого усилия.

Процесс наполнения бачка

В случае, когда на схеме бачка унитаза подающий шланг находится сбоку, уровень воды корректируют путем изменения параметра спицы, у которой на конце имеется поплавок. Иногда в моделях унитаза вместо спицы задействуют толстую латунную проволоку. Чем выше будет поплавок, тем больший объем жидкости поступит в резервуар.

Производители сантехники все чаще меняют металлические элементы на пластиковые изделия. Но их сгибать невозможно, так как они поломаются. В данном случае в схеме сливного бачка унитаза предусмотрено перемещение поплавка вдоль шпильки вверх или вниз, в результате чего объем жидкости меняется в большую или меньшую сторону.

При проведении данной работы с бачка нужно снять крышку с закрепленной кнопкой. В некоторых приборах она подсоединена жестко к смывному клапану

Чтобы не допустить поломки, конструкцию сливного бачка унитаза с кнопкой нужно разбирать максимально осторожно

Предлагаем ознакомиться Как убрать запах из стиральной машинки автомат в домашних условиях: 5 способов

Сначала на кнопке выкручивают зажим и только тогда убирают крышку. Когда поплавок находится сверху, но не перекрывает водный поток, неисправность возникла в результате некорректной работы впускного клапана. Эту деталь разбирают, прочищают и собирают обратно или приобретают новую.

Что происходит после нажатия рычага/кнопки?

Изначально активируется шток, производящий подъем пробковой груши – запорного клапана сливного узла, в результате чего вода из накопительной емкости свободно проникает в унитаз, омывая его рабочую поверхность, после чего попадает в канализацию. Потом пробка под воздействием собственной массы становится на место. перекрывая ток воды в унитаз.

Одновременно с падением уровня воды в резервуаре открывается запорный клапан впускного механизма и осуществляется наполнение бачка рабочей жидкостью. Этот процесс прекращается по достижении поплавком верхнего положения, которое обычно устанавливается на 20-30 миллиметров ниже боковых отверстий резервуара.

Кулачковые механизмы

Устройства применяются при необходимости преобразования вращения ведущего вала в линейное перемещение небольшой амплитуды. Основные элементы механизма следующие:

  • ведущий вал;
  • закрепленный на нем (или являющийся его частью);
  • фасонный диск с выступом;
  • толкатель, движущий в направляющих, обеспечивающих линейность его движения.

Фасонный диск (он называется также кулачком) – это активный элемент кинематической пары. Исполнительным элементом служит толкатель. Иногда движение передается через качающиеся на параллельном валу коромысло.

Одним из основных параметров у механизмов с толкателем является эксцентриситет — ось толкателя смещается относительно оси кулачка.

Принцип работы кулачкового механизма прост:

при вращении кулачка в плоскости толкателя он поворачивается своим сечением с большим радиусом, оказывая давление на толкатель и вынуждая его к линейному движению. Это перемещение происходит до тех пор, пока не будет достигнута вершина кулачка. После его прохождения давление на шток начинает ослабевать вплоть до достижения минимального радиуса диска. Шток возвращается обратно под действием пружины. Цикл повторяется.

Особенностью кулачковой пары является ее необратимость. Кривошипный механизм может преобразовывать движение в обе стороны. Так, в бензиновом или дизельном двигателе во время рабочего хода продольный ход поршня преобразуется во вращение коленвала. Во время такта выпуска накопленная инерция вращения маховика вращает коленвал, и кривошипный механизм превращает его в обратный ход поршня, вытесняющего остатки продуктов сгорания рабочей смеси из цилиндра.

Кулачковая пара такой обратимости не имеет, поскольку отсутствует жесткая связь между элементами. Толкатель совершает обратное перемещение под действием возвратной пружины.

Самым широко распространенным примером кулачкового механизма служит распределительный механизм в двигателе внутреннего сгорания. Кулачки распредвала напрямую или через коромысла открывают в определенном порядке клапаны цилиндров. Закрываются они возвратными пружинами.

Чтобы спроектировать действующее устройство, необходимо провести ряд расчетов, для синтеза кулачкового механизма построить передаточную диаграмму.

Требования безопасности

При проектировании и монтаже рычажного механизма учитываются требований безопасности. Они во многом зависят от области применения устройства, а также особенностей самого механизма.

Среди особенностей этого момента можно отметить следующее:

  1. При изготовлении должен подбираться материал, который будет соответствовать всем требованиям. Примером можно назвать высокую коррозионную стойкость. При проектировании указывается то, какой именно материал должен применяться при изготовлении устройства. Часто отдается предпочтение углеродистой стали и легированным сплавам. Некоторые элементы могут быть изготовлены из уплотнительных и других материалов, все зависит то конкретного случая.
  2. При проектировании учитывается то, каким образом происходит перераспределение нагрузки. Это связано с тем, что в некоторых местах она будет критической.
  3. Под активным элементом при подъеме тяжелых объектов не должно находится людей, другого оборудования, а также частей самого рычажного механизма. Это связано с высокой вероятностью падения переносимого груза.
  4. Перед непосредственным применением оборудования следует проводить визуальный осмотр, который позволяет определить наличие или отсутствие повреждений. Кроме этого, должно проводится периодическое обслуживание. Даже незначительный дефект может стать причиной существенного снижения прочности рычажного механизма. Периодическое обслуживание позволяет существенно продлить срок службы устройства.
  5. Запрещается применять механизм не по предназначению. Перед каждым его использованием проверяется надежность крепления. Нагрузка должна оказываться на конструкцию соответствующим образом, так как в противном случае происходит неправильное перераспределение силы. Именно поэтому при проектировании указывается то, каким образом устройство должно устанавливаться и как использоваться.
  6. При применении учитывается то, на какую максимальную нагрузку рассчитано оборудование. Слишком высокий показатель может стать причиной, по которой происходит повреждение основных элементов. При проектировании учитывается то, какая нагрузка может оказываться на конструкцию.

Как правило, соответствующее руководство по применению устройства составляется непосредственно на месте его эксплуатации в соответствии с установленными нормами. Это связано с тем, что рычажные механизмы получили весьма широкое распространение, могут устанавливаться в качестве составного узла другого оборудования.

При этом узел оборудован тремя важными независимыми системами:

  1. Гидравлическая. Эта часть устанавливается в большинстве случаев для передачи усилия. Гидравлика получила весьма широкое распространение, так как она предназначена для непосредственной передачи усилия. Гидравлическая часть основана на подаче специальной жидкости, при помощи которой проводится передача усилия. Гидравлика несет с собой опасность по причине того, что подвижный элементы могут передавать усилие. Поэтому все основные элементы должны быть защищены от воздействия окружающей среды, для чего проводится установка различных кожухов.
  2. Механическая. Механика отвечает за непосредственную передачу усилия и достижения других целей. Неправильная работа устройства может стать причиной повреждения и деформации. Механика также защищается специальными кожухами, так как попадание посторонних элементов запрещается.
  3. Электрическая. Для управления механизмом проводится установка электрической части. Она должна быть защищена от воздействия окружающей среды, так как даже незначительное механическое воздействие может стать причиной повреждения магистрали электроснабжения.

Опасность с собой несет и электрическая часть, которая состоит из конечных выключателей. Схема подключения предусматривает использование как минимум двух выключателей, устройство должно обесточиваться в случае выхода из строя одного из них.

Механическая система защиты действует путем прерывания подачи масла в гидравлический цилиндр. При этом проводится слив масла с цилиндра в общую емкость. Подобная система срабатывает даже при незначительном повреждении устройства.

Винт.

Резьба винта (рис. 7) – это, в сущности, наклонная плоскость, многократно обернутая вокруг цилиндра. В зависимости от направления подъема наклонной плоскости винтовая резьба может быть левой (A

) или правой (B ). Сопрягающаяся деталь, естественно, должна иметь резьбу такого же направления. Примеры простых устройств с винтовой резьбой – домкрат, болт с гайкой, микрометр, тиски.

Поскольку резьба – наклонная плоскость, она всегда дает выигрыш в силе. Идеальный выигрыш равен отношению расстояния, проходимого точкой приложения усилия за один оборот винта (длины окружности), к расстоянию, проходимому при этом нагрузкой по оси винта. За один оборот нагрузка перемещается на расстояние между двумя соседними витками резьбы (a

иb илиb иc на рис. 7), которое называется шагом резьбы. Шаг резьбы обычно значительно меньше ее диаметра, так как иначе слишком велико трение.

Основные параметры кулачкового механизма

Наиболее важными параметрами устройства, определяющими его рабочие качества, служат:

  • наибольший ход толкателя (ход плеча коромысла);
  • наибольшая скорость поступательного перемещения;
  • траектория исполнительного органа.

Кроме того, в расчете участвуют и такие характеристики, как:

  • скорость вращения приводного вала;
  • заданное усилие на исполнительном органе;
  • период работы, у большинства схем принимается равным полному обороту вала (2π);
  • фазовыми углами Θ

Фазовые углы различаются на следующие:

  • фаза удаления Θу – угол, при повороте вала на который происходит максимальное перемещение толкателя между его крайними положениями;
  • фаза верхнего стояния Θв.в- угол максимального удаления толкателя от оси кулачка;
  • фаза сближения Θс соответствует перемещению толкателя из дальнего в ближнее положение, противоположна по смыслу фазе удаления, но не обязательно равна ей по величине;
  • фаза нижнего стояния Θ н.в — соответствует минимальному удалению и по смыслу противоположна Θ в.в.

Если сложить все фазовые углы, должна получиться полная окружность

Θ = Θу + Θв.в + Θс + Θн.в =2π.

Рабочий ход складывается из первых трех фаз:

Θр.х= Θy+ Θв.в+ Θс.

Холостой ход образуется из фазы нижнего стояния:

Θх.х= Θн.в.

Каждой фазе работы ставится в соответствие один из профильных углов Σ: Σу; Σв.в; Σс; Σн.в.

Обычно фазовый и профильный угол для каждого состояния не равны между собой

Θ ≠ Σ.

Расчет кинематики кулачкового устройства базируется на линейных и угловых размерах его компонентов. Соотношение между ними называют законом выходного звена кинематической схемы.

Его выражают как функцию от текущего угла поворота вала, он учитывает все свойства структуры системы и ее проектных характеристик:

S =f(Θ), где Θ – угол поворота ведущего вала.

Закон выходного звена можно получить двумя методами:

  • расчетно-аналитическим;
  • графоаналитическим.

Расчетно-аналитический способ существенно более точен, но требует сложных расчетов. Его используют как основной при проектировании ответственных механизмов.

Графоаналитический способ вычисления закона проще в исполнении и значительно более нагляден. Его используют для простых устройств и как способ предварительной оценки пред проведением расчетно- аналитических вычислений.

С развитием средств вычислительной техники и программного обеспечения сложности расчетно- аналитического метода отошли в прошлое. Средства трехмерного параметрического моделирования и кинематической симуляции, предлагаемые всеми ведущими производителями программных продуктов семейства CAD- CAE, позволяют одновременно проводить графическое моделирование и аналитические расчеты, существенно облегчая работу конструктора.

Классический графоаналитический способ реализуется:

  • построением кинематических диаграмм;
  • формированием кинематических планов с применением заменяющего механизма.

Чертеж его представляет собой упрощенную модель, содержащую лишь низшие пары. Их отличительное свойство заключается в том, что они обладают в фиксированных положениях ведущего звена теми же значениями координат, скорости и ускорения, как и у моделируемых ими компонентов высшей пары.

Во время построения упрощенной модели следует следить за тем, чтобы сохранялись законы движения ведущего и ведомого элементов кулачкового устройства, а также относительное положение их осей.

Пара высшего порядка моделируется связанной двойкой низших пар. Вследствие этого в схеме возникает фиктивное третье звено, а вместо схемы кулачковых механизмов подставляют эквивалентную схему рычажной системы.

Обычно функция движения выходного звена имеет вид второй производной расстояния по углу положения вала либо по времени. Тогда она имеет физический смысл ускорения, и для графического моделирования применяют способ построения кинематических диаграмм.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий