Конические зубчатые передачи

Материалы

Чаще всего используется сталь. Но более мягкая и дешевая в вале и подшипниках. И максимально жесткая в колесах. Ведь они постоянно контактируют, трутся, давят. Поэтому применяется не только легированная сталь или углеродная, но и специальные методы обработки. Азотирование как вариант, а также цементирование. Закалка поверхностного уровня.

Любопытно, что в середине зацепы куда мягче, чем на поверхности. Ведь если сделать их твердыми по всему объему, они начнут ломаться при постоянных нагрузках, станут хрупкими. А если учитывать сферы, где применяются зубчатые передачи, особенности использования – такого допускать нельзя.

Спироидные зубчатые передачи

Спироидные зубчатые передачи

Спироидные зубчатые передачи — это гипоидные зубчатые передачи, в которых начальные поверхности зубчатых колёс конические, шестерни имеют винтовые зубья, а зубчатые колеса имеют сопряженные поверхности зубьев с линейным контактом, если производящая поверхность для одного из них совпадает с главной поверхностью зубьев первого зубчатого колеса. По форме поверхности вершин витков червяка и способу его расположения относительно межосевой линии их разделяют на три вида: цилиндрические спироидные передачи, традиционно конусные наружного зацепления, обратноконусные внутреннего зацепления (рис. 8).

Принцип работы

В большинстве случаев генератор энергии и конечный агрегат имеют разные характеристики. Они отличаются по скорости вращения, мощности, углу приложения усилия. Чтобы обеспечить доставку крутящего момента от двигателя до конечного агрегата, необходимо использовать промежуточные модули, способные передавать усилие с минимальными потерями.

Такими модулями служат зубчатые колеса (шестерни). Они представляют собой диск с зубьями, расположенный на цилиндрической или конической поверхности. Обычно они используются парами разного диаметра с одинаковым количеством зубьев.

Во время работы механизма зубья двух шестерен сцепляются. Головка зуба входит в зацепление с повторяющим ее форму углублением на соседней шестерне. При проворачивании ведущего вала ведомый начинает вращаться в противоположную сторону.

Таким образом, вращающий момент передается от одного элемента к другому. Если диаметр ведущего колеса больше, то вращающий момент ведомого колеса уменьшается, и наоборот.

Конструктивные особенности и принцип действия

Зубчатая передача представляет собой механизм, в котором двигательная энергия между валами передается посредством взаимодействия колес с зубьями и реек.

Колесо на передающем вращение валу называется ведущим, а на том, что получает энергию – ведомым. При этом более крупная деталь пары именуется собственно колесом, а меньшая – шестерней. Всю конструкцию нередко называют колесной парой.

Взаимодействие элементов тандема заключается в том, что головка зуба колеса входит во впадину шестерни, заставляя тем самым ее вращаться. Как правило, вращение последней происходит в направлении, противоположном движению колеса.

Между элементами предусмотрен минимальный зазор, что позволяет выполнять смазку, улучшая вращение и предотвращая заклинивание.

Цилиндрические зубчатые передачи достоинства и недостатки

Механизм, в котором два подвижных звена являются зубчатыми ко­ лесами, образующими с неподвижным звеном вращательную или поступатель­ ную пару, называют зубчатой передачей

(рис. 1). Меньшее из колес передачи принято называть шестерней, а большее – колесом, звено зубчатой передачи, соверша­ющее прямолинейное движение, называют зубчатой рейкой (рис. 1, г). Термин «зубчатое колесо» является общим. При одинаковых размерах колес шестерней называют ведущее зубчатое колесо. Параметры шестерни сопровождаются индексом “1”, а колеса – “2”.

Рис. 1. Виды зубчатых передач: а, б, в —

цилиндрические зубчатые передачи с внешним зацеплением;г— реечная передача;

д

— цилиндрическая передача с внутренним зацеп­лением;е —зубчатая винтовая передача;ж, з, и— конические зубчатые передачи; к — ги­ поидная передача

В большинстве случаев зубчатая передача служит для передачи враща­тельного движения. В некоторых механизмах эту передачу применяют для преобразования вращательного движения в поступательное (или наоборот, см. рис. 1, г).

Зубчатые передачи — наиболее распространенный тип передач в совре­менном машиностроении и приборостроении. Их применяют для передачи мощностей от долей (механизм кварцевых наручных часов) до десятков тысяч киловатт (крупные шаровые мельницы, дробилки, обжиговые печи) при окружных скоростях до 150 м/с и передаточных числах до нескольких сотен и даже тысяч, с диаметром колес от долей миллиметра до 6 ми более. Диаметры колес судовых установок, например, в передачах на гребной винт достигают 6 м.

Основные достоинства и недостатки зубчатых передач

Ключевые преимущества видны невооруженным взглядом. Это:

• Длительный срок эксплуатации. Мы уже пояснили, что простой инструмент редко ломается. А в обозначенном случае мы имеем дело с крепким металлом, отсутствием ломких деталей, закаленной частью, соприкасающейся с партнером (зубьями). Поэтому такой механизм по праву можно считать долгожителем.
• Простая регулировка скорости. Масса вариантов настройки, установки.
• Высочайший уровень КПД при небольших затратах.
• Компактность

Что особенно важно. Ведь минимальный размер всего механизма позволяет сэкономить место в устройстве

Как пример, зубчатая передача позволяет сделать более компактный насос, сохраняя высокую мощность.

Но и минусы тоже существуют:

  • • Динамически во время работы невозможно сменить темп.
  • • Дороговизна, а также сложность. Выполнить кустарными методами, как муфту или что-то схожее, не выйдет. Необходимо обращаться к профессиональным производителям. И одним из лучших вариантов будет «Сармат». Где при эталонном качестве продукта не задираются расценки выше среднерыночных. Что редкость для современной экономической ситуации.
  • • Шумовой эффект. Избавиться от аспекта не получится, и чем выше скорость, тем сильнее будет сопровождающий работу звук. Вращательное движение не может быть беззвучным, зацепление зубьев делает свое дело. Такой способ является очень надежным, но и весьма шумным.

Главные геометрические параметры

Построение кинематической схемы, технические свойства, способы обработки некоторых деталей данных механизмов задаются формой геометрии индивидуальных элементов. Ключевыми геометрическими параметрами, которые рассчитываются во время проектирования считаются:

  • углы делительных конусов (каждого колеса или шестерёнки);
  • диаметры всех компонентов (двоих валов, ведущих и ведомых шестерён);
  • внешний окружной модуль шестерни;
  • расстояние от вершины конуса до его создающей (именуется делительное расстояние);
  • расстояние между осей;
  • радиальный просвет используемых подшипников;
  • делительный диаметр (он определяет величину зуба шестерёнки);
  • диаметр углублений и верхней части зубьев.

Для комфорта выполнения расчетов и понимания механизма зацепления вводят 3 вида торцовых сечений. Это сечения во внешней, внутренней и средней части каждого зуба.

Уменьшение толщины зубьев в направлении к вершине приводит к созданию хорошего зацепления в период движения. Наклонный угол в направлении к вершине определяет параметры, задаваемые во время обработки.

Под линией зубьев знают пересекание 2-ух прямых. Одна основана поверхностью сбоку зуба, вторая считается краем делительной конусообразной поверхности.

Чтобы улучшить рабочие свойства — увеличения стойкости к износу, сопротивления при контакте, уменьшение заедания и лучшей передачи конусообразным зубчатым колёсам энергии вращения применяют метод выравнивания коэффициентов удельного скольжения.

Для этой цели колесо и шестерню пытаются сделать с схожими характеристиками смещения, но с различными знаками. К примеру, для шестерни задают параметр со знаком плюс, а для колеса со знаком минус.

Главные геометрические соотношения задаются на шаге разработки всего механизма конусообразной передачи качество передачи. Геометрические параметры рассчитываются на основании популярных соотношений.

Конические зубчатые передачи

Очень часто необходимо передавать вращательное движение с изменением направления. Для решения этой задачи разработан и успешно применяется специальный вид зубчатых передач. Они дали название целому классу таких механизмов — конические зубчатые передачи. Данные агрегаты способны обеспечить изменение направления вращения в широком диапазоне углов. Кроме изменения направления они способны изменять частоту оборотов и мощность.

Распространение получили передачи, которые способны изменять направление под прямым углом. Изменение направления производится перпендикулярно ведущей оси.

Типы станков для обработки конических колес

Колёса с прямыми зубьями обрабатывают, обычно, на зубодолбежных или зубострогальных станкахпо методу обкатки одним или чаще двумя резцами. На этих станках воспроизводится зацепление нарезаемого зубчатого колеса с воображаемым плоским производящим зубчатым колесом; при этом два зуба последнего представляют собой зубострогальные резцы, совершающие возвратно-поступательное движение, боковые поверхности каждого из зубьев нарезаемого зубчатого колеса формируются в результате движения резцов и обработки находящихся в зацеплении плоского и нарезаемого зубчатых колёс. Процесс нарезания зубьев происходит при движении резцов к вершине конуса заготовки, а обратный ход является холостым (в этот период резцы отводятся от заготовки).

Пример зубострогальных станков:

  • 5236П станок зубострогальный для нарезания прямозубых мелкомодульных конических колес Ø 125
  • 5Т23В станок зубострогальный для нарезания прямозубых прецизионных мелкомодульных конических колес Ø 125
  • 5230 станок зуборезный для нарезания прямозубых конических колес Ø 320
  • 5А250П станок зубострогальный для нарезания прямозубых конических колес Ø 500
  • 526 станок зубострогальный для нарезания прямозубых конических колес Ø 610

Конические зубчатые колёса с круговыми зубьями нарезаются на зуборезных станках методом обкатки с применением зуборезной резцовой головки, представляющей собой диск с вставленными по его периферии резцами, обрабатывающими профиль зуба с двух сторон (первая половина резцов обрабатывает одну сторону, вторая половина — другую).

Пример зуборезных станков:

  • 528С cтанок зуборезный для нарезания конических колес с круговыми зубьями Ø 800
  • 525 cтанок зуборезный для нарезания спиральных конических колес Ø 500
  • 5С280П станок зуборезный для конических зубчатых колес с круговыми зубъями полуавтомат Ø 800
  • 5С23П станок зубострогальный для нарезания методом обкатки мелкомодульных конических и гипоидных колес с круговыми зубьями Ø 125

Геометрические параметры конических зубчатых передач

Геометрические расчеты конических колес аналогичны расчетам цилиндрических. Зубья конических колес образуются обкатыванием по плоскому колесу с прямолинейным профилем зубьев аналогично тому, как зубья цилиндрических колес образуются обкатыванием по рейке. Число зубьев плоского колеса (может получиться дробным). Вместо начальных и делительных цилиндров цилиндрических колес в конических колесах вводятся понятия: начальный и делительный конусы, которые, как правило, совпадают, так как для конических колес угловую коррекцию практически не применяют. В качестве торцовых сечений рассматривают сечения поверхностями дополнительных конусов, т.е. Конусов, оси которых совпадают с осью колеса, а образующие перпендикулярны к образующим делительного конуса. Используются понятия внешнего и внутреннего дополнительных конусов (ограничивающих зубчатый венец) и среднего дополнительного конуса. Действительные профили зубьев конических колес весьма близки к профилям воображаемых эквивалентных цилиндрических колес с радиусами делительных окружностей, равными длинам образующих дополнительных конусов. Зубья конических колес по признаку изменения размеров сечений по длине выполняют трех форм.

Осевая форма I — нормально понижающиеся зубья; вершины делительного и внутреннего конусов совпадают (а). Эту форму применяют для конических передач с прямыми и тангенциальными зубьями, а также ограничено для передач с круговыми зубьями при и .

Осевая форма II(б) — вершина внутреннего конуса располагается так, что ширина дна впадины колеса постоянна, а толщина зуба по делительному конусу растет с увеличением расстояния от вершины. Эта форма позволяет обрабатывать одним инструментом сразу обе поверхности зубьев колеса. Поэтому она является основной для колес с круговыми зубьями, широко применяется в массовом производстве.

Осевая форма III (в) — равновысокие зубья; образующие делительного и внутреннего конусов параллельны. Эту форму применяют для круговых зубьев при , в частности при средних конусных расстояниях 75—750 мм. Формы II и III получают смещением вершины конуса впадин и вершины делительного конуса (б, в). Области применения подробнее см. ГОСТ 19326—73.

У конических колес удобно измерять, а потому и задавать размеры зубьев на внешнем дополнительном конусе. В зубчатых колесах с зубьями формы I обычно оперируют окружным модулем на внешнем торце. В зубчатых колесах с зубьями формы II и III преимущестенно оперируют нормальным модулем на середине ширины зубчатого венца. Круговые зубья нарезают немодульным инструментом, позволяющим обрабатывать зубья в некотором диапазоне модулей. Поэтому допускается применять передачи с нестандартными и дробными модулями.

Соотношение между модулями и следующее:

где — внешнее конусное расстояние Угол наклона линии зуба выбирают, учитывая, что увеличение улучшает плавность зацепления, но при этом возрастают усилия. При круговых зубьях преимущественно применяют = 35°, а при тангенциальных 20. 30°, обычно угол выбирают кратным 5°. Минимально допустимые числа зубьев приведены в таблице:

Для уменьшения шума рекомендуют применять притирку и выбирать некратные числа зубьев колес. Для зубчатых передач с твердостью рабочих поверхностей зубьев шестерни и колеса число зубьев шестерни рекомендуют выбирать по следующим графикам в зависимости от внешнего делительного диаметра шестерни , при твердости и 2,5 удобно применять так называемую тангенциальную коррекцию, заключающуюся в утолщении зуба шестерни и соответственном утонении зуба колеса. Тангенциальная коррекция конических колес не требует специального инструмента, так как ее получают благодаря разведению резцов, обрабатывающих противоположные стороны зубьев. Для цилиндрических колес тангенциальную коррекцию не применяют, так как она требует специального инструмента. Основные размеры конических зубчатых колес с прямыми, тангенциальными и круговыми:

Применение механизма

Область применения подобных передач целесообразно рассматривать по трём наименованиям: скоростные, силовые, приборные. Все они получили широкое распространение в различных отраслях промышленности. Зубчатые колёса хорошо зарекомендовали себя при создании самых сложных кинематических схем.

Скоростные передачи предназначены для повышения скорости передаваемого вращения. Они успешно применяются в редукторах турбомашин, коробках перемены передач автомобилей (механических и автоматических).

От силовых передач требуется значительное повышение мощности передаваемого вращения. Они эксплуатируются в крановых установках, прокатных станах, тяговых механизмах различного назначения. Такие конструкции работают на малых скоростях. Благодаря этому удаётся передавать большие крутящие моменты. Главным требованием, которое предъявляют к элементам таких систем – плотный контакт между зубьями входящими в зацепление.

На практике распространение получил класс гипоидных агрегатов. Их устанавливают в механизмы и оборудование которые, используются в общем машиностроении. Например, грузовых и легковых автомобилях (в качестве элементов трансмиссии). Особое место такие системы занимают в вертолётостроении. Их применяют на летательных аппаратах практически всех конструкций. Этого удалось добиться благодаря применению зубчатых колёс оснащённых круговыми зубьями. Увеличением угла наклона зуба позволяет передаче работать более плавно. В этом случае удаётся избавиться от рывков и проскальзываний. Наиболее эффективным считается угол т равный 35°. Такие колеса обладают повышенной несущей способностью, надёжностью и долговечностью. Данные передачи работают плавно и практически бесшумно. Они надёжно выполняют свои функции, даже на высоких скоростях. Эта способность реализована благодаря многопарному зацеплению. Такой механизм позволяет снизить динамические нагрузки и предотвратить проскальзывание. Конструкции подобного вида активно применяются в приводе несущих винтов вертолетов различных аэродинамических схем.

Приборные или отсчетные устройства применяют в механизмах научно — исследовательских приборов, счетно-решающих устройствах, бытовой технике. Ведущие и ведомые элементы в этих устройствах могут изготавливаться из цветных металлов или синтетических и полимерных материалов.

Основным требованием к коническим системам в таких агрегатах является соблюдение высочайшей кинематической точности при изменении направления вращения.

В ней должны быть хорошо согласованы углы наклона ведущего и ведомого колеса, точно выверен угол поворота.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Устройство конической передачи

Коническая зубчатая передача представляет собой пару конических шестерен — зубчатых колес, прошедших обработку под заданным углом. После обработки обе шестерни получают изменяемый от основания к вершине диаметр, форму, напоминающую конус, благодаря чему и получили свое название. Зубья шестерен вырезаются на боковой поверхности, при работе конические шестерни сопрягаются боковыми плоскостями. Конические пары в силу особенностей своей конструкции считаются наиболее сложными в изготовлении и сборке. К тому же они имеют не самую высокую несущую способность (например, у конической передачи при прочих равных параметрах она на 15% ниже). Тем не менее в узлах и механизмах, где необходима передача крутящего момента с угловым смещением, альтернативы им нет.

Элемент пары, передающий крутящий момент, называют ведущим (шестерней), а тот, что принимает крутящий момент — зубчатым колесом (ведомым). Результирующий угол изменения направления вращения равен сумме углов обеих конических шестерен. Наиболее часто в машинах и механизмах встречается ортогоническая коническая пара, изменяющая направление вращающего момента под углом 90 градусов (2 х45). Возможности конической передачи не исчерпываются способностью изменять направление оси вращения в широком диапазоне углов. С помощью такой конструкции можно также изменить частоту вращения (число оборотов в минуту) и мощность.

Зубчатые передачи: виды, достоинства и недостатки зубчатых передач

Подавляющее большинство механических передач имеет в своей основе зубчатые зацепления. Другими словами, в зубчатой передаче усилие передается благодаря зацеплению пары зубчатых колес (зубчатой пары). Зубчатые передачи активно используются, позволяя изменять скорость вращения, направление, моменты.

Основной задачей является преобразования вращательного движения, а также изменение расположения элементов трансмиссии и ряд других функций, которые необходимы для работы узлов, агрегатов и механизмов. Далее мы рассмотрим типы зубчатых передач, их особенности, а также достоинства зубчатых передач и их недостатки.

Как классифицируются зубчатые передачи

Сложно выделить единую градацию, на которую бы опирался каждый производитель. Существует значительное количество разнообразных факторов, становящихся фундаментальными в зависимости от задач на производстве. Поэтому и используется несколько вариаций группировки.

Посмотрим, по каким аспектам разделяют эти инструменты на подвиды:

  • • Основываясь на расположении осей по сравнению друг с другом. Так появляются параллельные типы, а также пересекающиеся. Отдельной строкой идут перекрещивающиеся. Разумеется, первый вариант – самый простой. И чаще всего выбирается именно он. Но существуют нетипичные задачи, где приходится использовать иные способы. Под осями подразумеваются механизмы, которые крепят колеса.
  • • Также некоторые классы опираются на расположение зубьев. Так у нас появляются внутренние и наружные варианты. Эффективность их напрямую опирается на всю систему. Панацеи нет. Им сказать, кто лучше не получится. Используются чаще наружные, но нельзя утверждать, что они результативнее.
  • • Корпус тоже имеет значение. Мы уже уточнили, зачем он нужен. Но пока не рассказали, что существуют модели с открытым типом оболочки. И что примечательно, такой вариант работает в принципе без внешней смазки. Сухой ход, как это принято называть. А закрытая модель – ближе к стандарту.
  • • Следует внимательно относиться и к размеру. Корректнее – к протяженности окружности. Чем она длиннее, тем больший путь проходит точка при одиночном повороте колеса. Соответственно, выделяют тихоходные и скоростные. Но стоит понимать, что динамика все же зависит от вала. Какой импульс он передаст. А форма лишь подскажет, сможет ли колесо справиться с ним и применить его по назначению.

Подведем итоги

Как видно, зубчатая передача является достаточно распространенным решением, которое используется в различных узлах, агрегатах и механизмах. С учетом того, что существует несколько типов таких передач, перед использованием одного или другого вида, в рамках проектирования конструкторы учитывают кинематические и силовые характеристики работы разных механизмов и агрегатов.

При этом основными условиями, которые определяют срок службы зубчатой передачи и ее ресурс, принято считать общую износостойкость поверхностей зубьев, а также прочность зубьев на изгиб

Чтобы получить нужные характеристики, в рамках проектирования производства зубчатых механизмов указанным особенностям уделяется отдельное повышенное внимание

Гипоидная передача в устройстве трансмиссии автомобиля: что такое гипоидная передача, в чем ее особенности и отличия, а также преимущества и недостатки.

Дифференциал коробки передач: что это такое, устройство дифференциала, виды дифференциалов. Как работает дифференциал КПП в трансмиссии автомобиля.

Главная передача в устройстве трансмиссии автомобиля: принцип работы, особенности конструкции. Виды главных передач по типу зубчатого соединения.

Понижающая (пониженная) передача: назначение передачи, особенности работы. Как пользоваться понижающей передачей и когда включать пониженную передачу.

Карданная передача: что это такое, устройство, особенности, принцип работы. Виды карданных передач в устройстве автомобильной трансмиссии.

Устройство полного привода, виды и типы полного привода, схема устройства привода на полноприводных авто. Полноприводные коробки, особенности.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий