Термопластичные полимеры

Введение

1.1. Статистические данные

  • Производство и экспорт полимеров
  • Производство изделий из пластмасс ( оригинальные производители оборудования (OEM))
  • Производственное оборудование для пластмасс (поставка оборудования)

Область198020022010Ежегодное изменение % (2002-2010)
Во всем мире1026374.5
США451051464.2
Латинская Америка7.520.530.55.1
Европа40971364.3
Восточная Европа8.512.5248.5
Япония50851083.0
Юго-Восточная Азия214.5246.5
Африка Ближний Восток38102.8

РейтингШтатЧисло рабочих, занятых в отрасли
1Калифорния137,800
2Огайо112,100
3Мичиган95,300
4Техас94,900
5Иллинойс89,100
6Пенсильвания74,400
7Индиана70,000
8Нью-Йорк52,800
9Северная Королина51,700
10Висконсин50,900

1.2. Виды полимеров и пластмасс

  • В отличие от других материалов, таких как металлы, у пластмасс есть многочисленные сорта и вариации каждого типа полимера. Эти вариации включают различные добавки, наполнители и волокна и др. С самого начала пластмассы преподносились как материалы, на которые надо ровняться, на сегодняшний день это стало реальностью, которая воспринимается как само собой разумеющееся.
  • Необычное молекулярное строение полимеров приводит к специфическому поведению, которое не наблюдается у других материалов. К особенностям относят вязкоупругие свойства и другие неньютоновские эффекты, наблюдаемые при деформации, например разжижение при сдвиге. Данные характеристики влияют не только на то как будет вести себя конечный продукт, но и на сам производственный процесс: заполнение формы, экструзия потока через фильеру и т.д. Это всегда приводит к остаточным напряжениям, а также к ориентации молекул и наполнителя, что вызывает анизотропию свойств в конечном продукте.
  • Во время проектирования и производства продукта, стоимость сырья является главным параметром выбором материала. Сейчас правда мы также должны учитывать экологический фактор. В том числе и влияние добавок, таких как растворители или определенные антипирены, на здоровье рабочих и на окружающую среду. К тому же следует иметь в виду, что производимые товары должны иметь возможность последующей переработки.
  • Одним из наибольших преимуществ полимеров являются низкие энергозатраты при переработке: плавление материала, придание ему формы и затвердевание
  • Дизайн, рабочие характеристики и способность к вторичной переработке продукта прямым образом влияют на выбор материала и добавок к нему, а также и на метод технологию производства и соответствующего режима обработки.

Термопласты с частичной кристаллизацией

Данный тип полимерных материалов имеет в составе как участки с определенной структурой, так и неструктурированные

. Структурированные участки макромолекул имеют название кристаллитов и в них плотность молекулярной структуры больше, чем в аморфных частях, так же как и сила физического соединения. К примеру, такой симметричной и длинной молекулярной цепью обладает полиэтилен с высокой плотностью. Чем больше будет кристаллизованных участков в полимере, тем менее прозрачным он будет. Для частично кристаллизованных термопластов температура эксплуатации обычно выше, чем значение стеклования, но переход в расплавленное состояние происходит очень резко без стадии повышенной эластичности. При остывании материал так же быстро застывает, но при этом количество участков с кристаллизацией увеличивается, поэтому он сильно деформируется и усаживается.

Свойства термопластичных полимеров в значительной степени зависит от длины молуекулы, химической структуры сегментов, уровня кристаллизации и взаимодействия молекул.

Состав, классификация, свойства и применение пластмасс

Пластмассы разделяют на простые и сложные. Простые пластмассы представляют собой чистые полимеры (полиэтилен, органические стекла и др.). Сложные пластмассы состоят из полимера, наполнителя, отвердителя, пластификатора, красителя и смазывающих добавок. Некоторые из перечисленных компонентов в отдельных видах пластмасс могут отсутствовать.

Полимер — основной элемент пластмассы, выполняющий роль связующего вещества. Характерной чертой полимеров является пластичность (способность материала принимать придаваемую ему форму под воздействием тепла и давления и устойчиво ее сохранять).

Наполнитель вводят с целью снижения стоимости материала и обеспечения ему заданных свойств (в первую очередь, прочностных). К наиболее распространенным наполнителям относятся древесная или минеральная мука (порошковые наполнители). Для получения особо прочных пластмасс в качестве наполнителя используют хлопчатобумажные и стеклянные ткани, бумагу или древесный шпон (тонкий лист древесины). Такие пластмассы называют слоистыми пластиками.

Пластификатор используют для повышения пластичности пластмасс. В качестве пластификаторов применяют эфиры многоатомных спиртов и многоосновных кислот.

Отвердитель (ингибитор) применяется для ускорения перехода термореактивных смол в неплавкое состояния или в твердое состояние термопластичных смол.

Смазывающие добавки повышают текучесть материала при переработке и предупреждают прилипание изделия к формообразующей оснастке.

Антистарители (антиокислители) используют для замедления процесса окисления пластмасс (особенно при повышенной температуре и воздействии света).

Красители служат для придания пластмассам требуемого декоративного вида, а также для уменьшения влаго- и светопоглощения.

Кроме того, в пластмассы вводят стабилизаторы, которые связывают низкомолекулярные продукты разложения полимеров, ускорители или замедлители процесса отверждения пластмасс.

В зависимости от химической природы полимеров пластические массы разделяют на четыре класса.

  1. Класс А. Пластические массы на основе высокомолекулярных соединений, получаемых цепной полимеризацией: полиэтилен ВД, полиэтилен НД, пропилен, винипласт и пластикаты на основе поливинилхлорида; полиизобутилен; фторопласты; полистирол и его сополимеры; этинопласты (поливинилбутироль и др.); акрилопласты и др.
  2. Класс Б. Пластические массы на основе полимеров, получаемых поликонденсацией и ступенчатой полимеризацией: фенопласты с различными наполнителями (пресс-порошки, волокниты, текстолиты, стекловолокниты, фаолит и другие); аминопласты; мелалит; эфиропласты; полиамиды (капрон и другие); уретанопласты; эпоксипласты и др.
  3. Класс В. Пластические массы на основе химически модифицированных природных полимеров. К ним относятся пластические массы на основе производных целлюлозы (целлулоид, этролы), галолит.
  4. Класс Г. Пластические массы на основе природных и нефтяных асфальтов и смол (битумопласты с различными наполнителями).

По виду основного вещества, т. е. его свойств при нагреве, все пластмассы подразделяют на термопластичные (термопласты) и термореактивные (реактопласты). Термопласты отличаются высокой технологичностью и небольшой усадкой при формовке, обладают большой упругостью и не склонны к хрупкому разрушению. Детали из них преимущественно изготавливаются без наполнителя. Термореактивные пластмассы хрупкие и дают большую осадку, поэтому использование наполнителя при изготовлении из них деталей предпочтительно.

Полиизобутилен

Термореактивные полимеры данной группы представляют собой вязкие жидкости, которые могут применяться при изготовлении клеящих составов. Кроме этого, можно отметить высокую пластичность, связанную с особой молекулярной массой. Среди других эксплуатационных качеств отметим нижеприведенные моменты:

  1. Высокая степень растворимости в углеводородах.
  2. При необходимости термореактивные полимеры данной группы смешиваются со специальными наполнителями, за счет чего придаются особые эксплуатационные качества.
  3. Данный тип полимера один из самых легких.
  4. Вещество устойчиво к воздействию кислот и различных щелочей.
  5. Из-за особенностей структуры вещество способно сохранять высокую эластичность при температуре до 50 градусов Цельсия.
  6. Полиизобутилен применяется для модификации битумных и полимерных материалов. Добавление проводится для повышения эксплуатационных качеств при воздействии низкой температуры.
  7. Высокие адгезионные способности в отношении практически всех строительных материалов, к примеру, бетона, дерева и штукатурки.
  8. Низкомолекулярные термореактивные полимеры этой группы применяются при изготовлении не высыхающего клея или мастики. Они подходят для крепления полимерных отделочных материалов, которые обладают низкой адгезией.
  9. Есть возможность получить мастики, которые применяются для герметизации стыков при проведении сборного строительства.
  10. При применении полимеров этой группы также получают листы, которые служат для защиты химической аппаратуры.

Полиизобутилен

Широкая область применения прежде всего связана с особыми эксплуатационными качествами, которыми обладают термореактивные полимеры.

Полипропилен

Еще один распространенный термопластичный полимер – полипропилен. В качестве исходного вещества для производства полимера используют – пропилен.

Имеет твердую, прочную структуру, устойчив к механическим воздействиям и к коррозийным процессам. Непрозрачный, как правило, белого цвета, не растворим в органических растворителях. Температура плавления +175С, а при 140 градусов продукт становится мягким на ощупь.

Полипропилен хорошо выдерживает механические нагрузки, не теряя при этом своих свойств. Необходимо отметить чувствительность материала к воздействию света — под действием солнечных лучей и воздуха полипропилен разлагается, теряет блеск, что приводит к ухудшению его механических и физических свойств.

Существует много сортов полипропилена, которые получаются при добавлении специальных присадок, добавок и каучуков. Он легко поддается механической обработке, удобен в уходе, этим обусловлено широкое использование пропилена в любой отрасли промышленного производства. Один из главных недостатков –слабая устойчивость к низким температурам. При температуре ниже -5С элемент становится хрупким. Таким образом, пригоден для использования внутри отапливаемых и закрытых помещений.

Формулы термопластичных полимеров

Применяется для производства пленок, упаковок, контейнеров для сыпучих продуктов и круп, одноразовой посуды. Из этого материала изготавливают трубы и фитинги, игрушки и канцелярию. При изготовлении изделий из полипропилена используются все известные способы обработки полимеров.

Фенолоальдегидные полимеры

Рассматривая синтетические полимеры следует начать обзор с фенолоальдегидной группы. Она стала производиться в начале 20 века. Применение термореактивных полимеров весьма обширно, что связано с их исключительными эксплуатационными качествами.

Свойства термореактивных полимеров данной группы:

  1. Данный полимер получил самое широкое распространение.
  2. Характерная особенность заключаются в коричневом цвете.
  3. При добавлении определенных веществ можно получать новолачные и олигомерные смолы с самыми различными эксплуатационными качествами.
  4. Смолы при нагреве и отсутствии примесей хорошо плавятся. После этого в расплавленном состоянии вещество густеет и постепенно затвердевает, после чего повысить гибкость будет невозможно.
  5. В жидком состоянии многие обладают высокой токсичностью. Именно поэтому при их применении следует соблюдать определенные правила безопасности. Слишком высокая концентрация в сочетании с токсичностью может привести к довольно большим проблемам со здоровьем.

Фенолоальдегидные полимеры

Данный термореактивный полимер зачастую применяется при производстве различных замазок или мастик, а также клея, которые отвердевает в холодном состоянии.

Термопластичные полимеры

Полимеры этого класса имеют линейную структуру длинных цепей, которые могут иметь перекрестные соединения за счет химически активных добавок. Материалы полимеризуются при снижении температуры ниже температуры плавления.

Основные типы термопластов:

  • Полиэтилен низкого и высокого давления — органическое соединение на основе соединений углерода в циклической молекуле. Температура пластификации 100° С для ПЭНД и 260° С для ПЭВД. При этом давление прессования ПЭВД составляет 150…300 МПа. Линейная структура полиэтиленов, при создании специальных условий или добавлении силанов, создает условия для получения «сшитого» полиэтилена. Ветви полимера типа РЕх-b образуют большое количество «боковые» ответвления, которые повышают плотность и механическую прочность, но не меняют химических свойств. Применяются для производства «бесконечных» изделий методом экструзии (трубы, слабонагруженные несущие элементы конструкций и т.п.) и производства большой номенклатуры изделий методом прессования в замкнутой форме.
  • Полиуретаны типа «Витур» — сложные химические соединения, которые для полимеризации требуют присутствия отвердителя органического типа. Полимерные цепочки имеют сложную форму, т.к. в ее структуру входят замещенные и незамещенные химические элементы. Область применения зависит от структуры полимера в твердом виде — линейной или сетчатой. Все технические типы (НИЦ ПУ-5; СКУ-ПФЛ-100;ТСКУ-ФЭ-4 и др.) имеют высокую износостойкость при твердости по Шору не ниже 75 ед. Продукция изготавливается методом прессования, литья, заливки в формы и методом экструзии.

Полиэтилены относятся к классическому типу термопластов, т.к. они допускают повторный нагрев и обработку давлением. Полиуретаны повторно используются после измельчения и добавления в состав первичного сырья.

Особенности термореактивных полимеров

Термореактивные полимеры — это материалы с сетчатой структурой. Они становятся твердыми непосредственно в процессе их изготовления, остаются в таком состоянии и не размягчаются при нагревании.

В сетчатых полимерах существует сетка ковалентных связей между соседними молекулярными цепями. При нагревании эти связи сохраняются и препятствуют вибрационным или ротационным движениям молекул. Поэтому они остаются твердыми при повышении температуры. Сетка поперечных сшивок – довольно плотная:

  • От 10 до 50% повторяющихся единиц в цепи связаны поперечными связями
  • Лишь нагревание до очень высоких температур приводит к разрушению этих связей, и, как следствие, полимер деструктирует
  • Как правило, реактопласты более жесткие и более прочные материалы по сравнению с термопластами, так что изделия из них лучше сохраняют приданную им форму.

Большинство сшитых и сетчатых полимеров, включая и вулканизованные каучуки, а также эпоксидные и фенольные смолы, а также полиэфиры, относятся к классу реактопластов.

Понять, что такое термопластичные полимеры поможет строение полимеров. Особенностью строения полимерной молекулы является повторяемость мономеров, которые в соединении полимеризируются. Кратко строение полимера можно изобразить формулой: 2 короткоживущих радикала метиленовой группы полимеризируются, создав прочный мономер этилена (СН2 = СН2). Несколько идентичных мономеров также способны создать прочную связь, только уже не двойную.

В полимеризации может участвовать n мономеров (их количество варьируется от 1 и свыше 1000), тогда формула получившегося элемента будет изображена следующим образом: (СН2-СН2)n – это формула простейшего полимера – полиэтилена. Если в строении полимера участвует один вид мономера – это гомополимер, если два вида и более – это сополимер.

Методы обработки

  • Литьё/литьё под давлением
  • Экструзия
  • Прессование
  • Виброформование
  • Вспенивание
  • Отливка
  • Сварка
  • Вакуумная формовка и пр.
  • Механическая обработка

Пластические массы, по сравнению с металлами, обладают повышенной упругой деформацией, вследствие чего при обработке пластмасс применяют более высокие давления, чем при обработке металлов. Применять какую-либо смазку, как правило, не рекомендуют; только в некоторых случаях при окончательной обработке допускают применение минерального масла. Охлаждать изделие и инструмент следует струёй воздуха.

Пластические массы более хрупки, чем металлы, поэтому при обработке пластмасс режущими инструментами надо применить высокие скорости резания и уменьшать подачу. Износ инструмента при обработке пластмасс значительно больше, чем при обработке металлов, почему необходимо применять инструмент из высокоуглеродистой или быстрорежущей стали или же из твердых сплавов. Лезвия режущих инструментов надо затачивать, по возможности, более остро, пользуясь для этого мелкозернистыми кругами.

Пластмасса может быть обработана на токарном станке, может фрезероваться. Для распиливания могут применяться ленточные пилы, дисковые пилы и карборундовые круги.

Сварка

Соединение пластмасс между собой может осуществляться механически (с помощью фигурных профилей, болтов, заклепок и т.д.), химически (склеиванием, растворением с последующим высыханием), термически (сваркой). Из перечисленных способов соединения только при помощи сварки можно получить соединение без инородных материалов, а также соединение, которое по свойствам и составу будет максимально приближено к основному материалу. Поэтому сварка пластмасс нашла применение при изготовлении конструкций, к которым предъявляются повышенные требования к герметичности, прочности и другим свойствам.

Процесс сварки пластмасс состоит в образовании соединения за счёт контакта нагретых соединяемых поверхностей. Он может происходить при определённых условиях:

  1. Повышенная температура. Её величина должна достигать температуры вязкотекучего состояния.
  2. Плотный контакт свариваемых поверхностей.
  3. Оптимальное время сварки — время выдержки.

Также следует отметить, что температурный коэффициент линейного расширения пластмасс в несколько раз больше, чем у металлов, поэтому в процессе сварки и охлаждения возникают остаточные напряжения и деформации, которые снижают прочность сварных соединений пластмасс.

На прочность сварных соединений пластмасс большое влияние оказывают химический состав, ориентация макромолекул, температура окружающей среды и другие факторы.

Применяются различные виды сварки пластмасс:

  1. Сварка газовым теплоносителем с присадкой и без присадки
  2. Сварка экструдируемой присадкой
  3. Контактно-тепловая сварка оплавлением
  4. Контактно-тепловая сварка проплавлением
  5. Сварка в электрическом поле высокой частоты
  6. Сварка термопластов ультразвуком
  7. Сварка пластмасс трением
  8. Сварка пластмасс излучением
  9. Химическая сварка пластмасс

Как и при сварке металлов, при сварке пластмасс следует стремиться к тому, чтобы материал сварного шва и околошовной зоны по механическим и физическим свойствам мало отличался от основного материала. Сварка термопластов плавлением, как и другие методы их переработки, основана на переводе полимера сначала в высокоэластическое, а затем в вязкотекучее состояние и возможна лишь в том случае, если свариваемые поверхности материалов (или деталей) могут быть переведены в состояние вязкого расплава. При этом переход полимера в вязкотекучее состояние не должен сопровождаться разложением материала термодеструкцией.

При сварке многих пластмасс выделяются вредные пары и газы. Для каждого газа имеется строго определённая предельно доступная его концентрация в воздухе (ПДК). Например, для диоксида углерода ПДК равна 20, для ацетона — 200, а для этилового спирта — 1000 мг/м³.

Виды и свойства термопластов

Термопластами (также называемые термопластичными полимерами, термопластиками, термопласт-полимерами, пластмассами, thermoplast, thermoplastic), говоря научным языком, называют полимеры, способные многократно преобразовываться при нагреве в высокоэластичное либо вязкотекучее состояние и в этой фазе перерабатываются в конечные изделия

По завершению изготовления изделия они обладают возможностью повторной переработки, что особенно важно при утилизации полимерных отходов.. К термопластам относят полиэтилен, полиметилметакрилат, полипропилен, полиэтилентерефталат, поливинилхлорид, поликарбонат, политетрафторэтилен, политрифторхлорэтилен, полиизобутилен, полистирол, полиамид, полиимид и другие полимеры.

К термопластам относят полиэтилен, полиметилметакрилат, полипропилен, полиэтилентерефталат, поливинилхлорид, поликарбонат, политетрафторэтилен, политрифторхлорэтилен, полиизобутилен, полистирол, полиамид, полиимид и другие полимеры.

Такие свойства обусловлены структурой макромолекул и их взаимодействием. Так термопластам свойственны линейные и разветвленные структуры макромолекул, а также отсутствие 3-хмерных сшитых структур. При этом группы макромолекул могут образовывать как аморфные, так и аморфно-кристаллические структуры. Макромолекулы связанны друг с другом, как правило, только физически, и энергия обрыва таких связей невысока, гораздо ниже энергии обрыва связей на химическом уровне в макромолекуле. Именно этим и обусловлен переход термопластов в пластичное состояние без деструкции макромолекул.

Однако существуют некоторые полимеры с линейной структурой макромолекул, но термопластичными не являются, так как температура их деструкции ниже температуры текучести. Ярким примером служит целлюлоза.

Чаще всего термопласты нерастворимы в воде (малогигроскопичны), являются горючими, устойчивыми к щелочным и кислотным средам, являются диэлектриками. Термопластичные полимеры классифицируют на неполярные и полярные по тому, как они себя ведут при наложении электрических полей.

Термопласты бывают наполненными или однородными. Однородные термопласты также именуют смолами, которые, в свою очередь, подразделяют на природные и синтетические. Наполнители же значительно изменяют эксплуатационные и технологические свойства термопластов. Широкое применение получили стеклопластики (полимеры, наполненные стекловолокном), углепластики (полимеры, наполненные углеволокном), а также специальные пластики (полимеры, наполненные разнообразными добавками — антипиренами, электропроводящими и антифрикционными добавками, антистатиками, износостойкими добавками и т.д.).

Механические свойства пластмасс

Механические свойства определяют поведение физического тела под действием приложенного к нему усилия. Численно это поведение оценивается прочностью и деформативностью. Прочность характеризует сопротивляемость разрушению, а деформативность — изменение размеров полимерного тела, вызванное приложенной к нему нагрузкой. Поскольку и прочность, и деформация являются функцией одной независимой переменной — внешнего усилия, то механические свойства еще называют деформационнопрочностными (рис. 6).

Рис. 6. Механические испытания пластмасс на деформацию прочность (слева), ударную вязкость (по центру), твёрдость (справа)

Модуль упругости является интегральной характеристикой, дающей представление прежде всего о жесткости конструкционного материала. Ударная вязкость характеризует способность материалов сопротивляться нагрузкам, приложенным с большой скоростью. В практике оценки свойств пластмасс наибольшее применение нашло испытание поперечным ударом, реализуемым на маятниковых копрах.

Твердость определяет механические свойства поверхности и является одной из дополнительных характеристик полимерных материалов. По твердости оценивают возможные пути эффективного применения пластиков. Пластмассы мягкие, эластичные, имеющие низкую твердость, используются в качестве герметизирующих, уплотнительных и прокладочных материалов. Твердые и прочные могут применяться в производстве деталей конструкционного назначения: зубчатых колес и венцов, тяжело нагруженных подшипников, деталей резьбовых соединений и пр. (рис. 7).

Рис. 7. Детали конструкционного применения из пластмасс

В таблице 3 указаны механические свойства термопластов общего назначения.

Таблица 3.

Несколько примеров по обозначению (см. табл. ниже).

ПЭВДПолиэтилен высокого давленияГОСТ 16337-77
ПЭНДПолиэтилен низкого давленияГОСТ 16338-85
ПСПолистирольная плёнкаГОСТ 12998-85
ПВХПластификаторыГОСТ 5960-72
АБСАкрилбутодиентстиролГОСТ 8991-78
ПММАПолиметилметаакрилатГОСТ 2199-78

Это интересно: Томпак — состав сплава и характеристики — состав, характеристики, производство, виды

Производство

Основным сырьем при производстве пластмасс является этилен. С его помощью получают полиэтилен, полистирол и поливинилхлорид.

Нарушение технологии режима полимеризации, ухудшает качество готовой продукции. В ней могут появиться поры в виде пузырьков и разводов. Существуют следующие виды пористости пластмассы: гранулярная, газовая и пористость сжатия. Такие дефекты недопустимы при изготовлении продуктов, влияющих на здоровье человека, например съемных протезов. Для их изготовления используются базисные пластмассы (самотвердеющие, при смешивании специального порошка и жидкости, материалы).

Существует несколько основных технологий производства пластмассовых изделий:

1. Технология выдувания. Хорошо разогретая формовочная масса заливается в открытую опоку, после чего ее герметично закрывают. Затем туда подается сжатый воздух, который распыляет горячий пластик по стенкам заданной формы.2. Формовка посредством вакуума (процесс изготовления проводится с перепадами воздушного давления).3. Технология литья. Жидкая пластмасса заливается в специальные емкости, в которых происходит охлаждение и формовка материала.4. Метод экструзии. Размягченную пластичную массу, продавливают через специальные отверстия в приспособление, которое формирует готовое изделие.5. Прессование. Это самый распространенный способ получения продукции из термоактивных пластмасс. Формование выполняется в специальных опоках под воздействием высокого давления и температуры.

Сферы применения пластмасс

Пластмассы используют в строительстве, производстве одежды, упаковке, транспортировке и во многих других сферах повседневной жизни. Так, в зданиях пластик применяется при вторичном остеклении крыш, в составе тепло- и звукоизолирующих конструкций в составе многих типов красок. Электрические кабели изолируются пластиком, пластмассы применяют и для изготовления водосточных систем.

Широко распространены различные бытовые предметы – обувь, светотехника, рамы, одежда – полностью или частично изготовленные из пластмасс. До трети всех пластмасс, которые мы используем – это упаковка, предназначенная для защиты продуктов от порчи.

Среди промышленных применений пластика – крылья автомобилей и их кузова, подшипниковые узлы, трибы несиловых передач и пр.

Материалы на основе пластмасс

Мебельные пластмассы

Пластик, который используют для производства мебели, получают путём пропитки бумаги термореактивными смолами. Производство бумаги является наиболее энерго- и капиталоемким этапом во всем процессе производства пластика. Используется 2 типа бумаг: основой пластика является крафт-бумага (плотная и небеленая) и декоративная (для придания пластику рисунка). Смолы подразделяются на фенолформальдегидные, которые используются для пропитки крафт-бумаги, и меламиноформальдегидные, которые используются для пропитки декоративной бумаги. Меламиноформальдегидные смолы производят из меламина, поэтому они стоят дороже.

Мебельный пластик состоит из нескольких слоёв. Защитный слой — оверлей — практический прозрачный. Изготавливается из бумаги высокого качества, пропитывается меламиноформальдегидной смолой. Следующий слой — декоративный. Затем несколько слоев крафт-бумаги, которая является основой пластика. И последний слой — компенсирующий (крафт-бумага, пропитанная меламиноформальдегидными смолами). Этот слой присутствует только у американского мебельного пластика.

Готовый мебельный пластик представляет собой прочные тонированные листы толщиной 1-3 мм. По свойствам он близок к гетинаксу. В частности, он не плавится от прикосновения жалом паяльника, и, строго говоря, не является пластической массой, так как не может быть отлит в горячем состоянии, хотя и поддается изменению формы листа при нагреве. Мебельный пластик широко использовался в XX веке для отделки салонов вагонов метро.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий